某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出,當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
(1)88輛
(2)x=4050時,f(x)最大,最大值為f(4050)=307050 元

試題分析:解: (1)當(dāng)每輛車月租金為3600元時,未租出的車輛數(shù)為 =12,所以這時租出了88輛.    4分
(2)設(shè)每輛車的月租金定為x元,則公司月收益為
f(x)=(100-)(x-150)-×50    8分
整理得:f(x)=-+162x-2100=- (x-4050)2+307050
∴當(dāng)x=4050時,f(x)最大,最大值為f(4050)=307050 元    12分
點(diǎn)評:主要是考查了函數(shù)實際問題中的運(yùn)用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)設(shè)表示中的較大值,表示中的較小值,記得最小值為得最小值為,則(      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值 .
(I)求實 數(shù)a和b.         (Ⅱ)求f(x)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處有極大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖所示,對應(yīng)關(guān)系是從A到B的映射的是(  )
     
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的周期函數(shù),其周期,直線是它的圖象的一條對稱軸,且上是減函數(shù).如果是銳角三角形的兩個內(nèi)角,則(   )
A.B.
C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個人每月應(yīng)還貸多少元?
(2)為了抑制高房價,國家出臺“國五條”,要求賣房時按照差額的20%繳稅.如果這個人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔(dān),問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),利用課本中推導(dǎo)等差數(shù)列前n項和公式的方法,可求得的值            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且
(1)求
(2)判斷的奇偶性;
(3)判斷上的單調(diào)性,并證明。

查看答案和解析>>

同步練習(xí)冊答案