【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若Sn=2an﹣n,則 + + + = .
【答案】
【解析】解:∵Sn=2an﹣n,∴n≥2時,an=Sn﹣Sn﹣1=2an﹣n﹣[2an﹣1﹣(n﹣1)],∴an=2an﹣1+1,化為:an+1=2(an﹣1+1),
n=1時,a1=2a1﹣1,解得a1=1.
∴數(shù)列{an+1}是等比數(shù)列,首項為2,公比為2.
∴an+1=2n,即an=2n﹣1,
∴ = = .
∴ + + + = + +…+ =1﹣ = .
故答案為: .
Sn=2an﹣n,n≥2時,an=Sn﹣Sn﹣1,化為:an+1=2(an﹣1+1),n=1時,a1=2a1﹣1,解得a1.利用等比數(shù)列的通項公式可得an=2n﹣1,于是 = = .利用裂項求和方法即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】下列幾個命題正確的個數(shù)是( )
①若方程有一個正實根,一個負實根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)的定義域為,則函數(shù)與函數(shù)圖像關(guān)于軸對稱;
④一條曲線和直線的公共點個數(shù)是,則的值不可能是1。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:x+2y-2=0,試求:
(1)點P(-2,-1)關(guān)于直線l的對稱點坐標;
(2)直線關(guān)于直線l對稱的直線l2的方程;
(3)直線l關(guān)于點(1,1)對稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過右焦點F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點,若△ABF1為等腰直角三角形,且|AB|=4 ,P(x,y)在雙曲線上,M( , ),則|PM|+|PF2|的最小值為( )
A. ﹣1
B.2
C.2 ﹣2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對于任意正實數(shù)x恒有f(x)≥g(x)
B.存在實數(shù)x0 , 當x>x0時,恒有f(x)>g(x)
C.對于任意正實數(shù)x恒有f(x)≤g(x)
D.存在實數(shù)x0 , 當x>x0時,恒有f(x)<g(x)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現(xiàn)要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】端午節(jié)小長假期間,張洋與幾位同學從天津乘火車到大連去旅游,若當天從天津到大連的三列火車正點到達的概率分別為0.8,0.7,0.9,假設(shè)這三列火車之間是否正點到達互不影響,則這三列火車恰好有兩列正點到達的概率是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知( +3x2)n的展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為32.
(1)求n;
(2)求展開式中二項式系數(shù)最大的項.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com