【題目】已知圓具有以下性質(zhì):設(shè)A,B是圓C:上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn).若直線PA,PB的斜率都存在并分別記為,,則=﹣1,是與點(diǎn)P的位置無關(guān)的定值.

(1)試類比圓的上述性質(zhì),寫出橢圓的一個(gè)類似性質(zhì),并加以證明;

(2)如圖,若橢圓M的標(biāo)準(zhǔn)方程為,點(diǎn)P在橢圓M上且位于第一象限,點(diǎn)A,B分別為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),過點(diǎn)A,B分別作⊥PA,⊥PB,直線交于點(diǎn)C,直線與橢圓M的另一交點(diǎn)為Q,且,求的取值范圍(可直接使用(1)中證明的結(jié)論).

【答案】(1)見證明;(2)

【解析】

1)設(shè)點(diǎn),則點(diǎn),由,由橢圓方程帶入化簡(jiǎn)可得解;

2)設(shè)AP的斜率為k,,結(jié)合(1)中的結(jié)論可得直線AC、BC和BQ的方程,聯(lián)立直線方程可得,由,結(jié)合可得解.

(1)性質(zhì):設(shè)A,B是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn).若直線,的斜率都存在并分別記為,,則是與點(diǎn)的位置無關(guān)的定值.

證明:設(shè)點(diǎn),則點(diǎn),從而.設(shè)點(diǎn)

,

是與點(diǎn)P的位置無關(guān)的定值.

(2)設(shè)AP的斜率為k,,因?yàn)镻為橢圓M上第一象限內(nèi)一點(diǎn),所以由(1)結(jié)論可知,所以BP的斜率為

因?yàn)?/span>,所以,則AC的方程為

因?yàn)?/span>,所以,則BC的方程為.

,得,即

設(shè),因?yàn)?/span>,

且直線的斜率,所以的斜率為,則的方程為

聯(lián)立方程,得,即

因?yàn)?/span>,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了七位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:10分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)(試卷考試:100分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

(Ⅰ)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01);

(Ⅱ)利用(I)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對(duì)關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)為95分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到0.1);

(Ⅲ)現(xiàn)要從醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)95分以下的醫(yī)護(hù)人員中選派2人參加組建的“九寨溝災(zāi)后醫(yī)護(hù)小分隊(duì)”培訓(xùn),求這兩人中至少有一人考核分?jǐn)?shù)在90分以下的概率.

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù)a為實(shí)數(shù)).

(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個(gè)不等實(shí)數(shù),使方程成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若有最小值,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓 的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)已知為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與橢圓交于, 兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城鎮(zhèn)化是國家現(xiàn)代化的重要指標(biāo),據(jù)有關(guān)資料顯示,19782013年,我國城鎮(zhèn)常住人口從1.7億增加到7.3億.假設(shè)每一年城鎮(zhèn)常住人口的增加量都相等,記1978年后第t(限定)年的城鎮(zhèn)常住人口為億.寫出的解析式,并由此估算出我國2017年的城鎮(zhèn)常住人口數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長(zhǎng)為分別是的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個(gè)頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線段上找一處開挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫,,,已知米,,記,該三條地下天燃?xì)夤芫的總長(zhǎng)度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請(qǐng)確定工作坑的位置,使此處地下天燃?xì)夤芫的總長(zhǎng)度最小,并求出總長(zhǎng)度的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案