【題目】研究變量得到一組樣本數據,進行回歸分析,有以下結論
①殘差圖中殘差點所在的水平帶狀區(qū)域越窄,則回歸方程的預報精確度越高;
②用相關指數來刻畫回歸效果,越小說明擬合效果越好;
③在回歸直線方程中,當變量每增加1個單位時,變量就增加2個單位
④若變量和之間的相關系數為,則變量和之間的負相關很強
以上正確說法的個數是( )
A.1B.2C.3D.4
科目:高中數學 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內的三條直線,若,則.類比推出:空間中的三條直線,若,則
B. 平面內的三條直線,若,則.類比推出:空間中的三條向量,若,則
C. 在平面內,若兩個正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個正四面體的棱長的比為,則它們的體積比為
D. 若,則復數.類比推理:“若,則”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15000人,其中男生10500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集200位學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這200個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖,其中樣本數據的分組區(qū)間為:,,,,,.估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數據中,有40位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.(把表簡要畫在答題卡上)
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | |||
每周平均體育運動時間超過4小時 | |||
總計 |
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過焦點作垂直于軸的直線,與拋物線相交于,兩點,為的準線上一點,且的面積為4.
(1)求拋物線的標準方程.
(2)設,若點是拋物線上的任一動點,則是否存在垂直于軸的定直線被以為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】洛薩科拉茨Collatz,是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數n,如果n是偶數,就將它減半即;如果n是奇數,則將它乘3加即,不斷重復這樣的運算,經過有限步后,一定可以得到如初始正整數為6,按照上述變換規(guī)則,我們得到一個數列:6,3,10,5,16,8,4,2,對科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請你研究:如果對正整數首項按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項為1,則n的所有可能的取值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】洛薩科拉茨Collatz,是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數n,如果n是偶數,就將它減半即;如果n是奇數,則將它乘3加即,不斷重復這樣的運算,經過有限步后,一定可以得到如初始正整數為6,按照上述變換規(guī)則,我們得到一個數列:6,3,10,5,16,8,4,2,對科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請你研究:如果對正整數首項按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項為1,則n的所有可能的取值為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結束該局.
(1)若在一局中甲先摸,求甲在該局獲勝的概率;
(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com