【題目】把三盆不同的蘭花和4盆不同的玫瑰花擺放在右圖圖案中的1,2,3,4,5,6,7所示的位置上,其中三盆蘭花不能放在一條直線上,則不同的擺放方法為(

A.2680種
B.4320種
C.4920種
D.5140種

【答案】B
【解析】解:7個(gè)點(diǎn)可組成的三角形有C73﹣5=30∵三盆蘭花不能放在一條直線上,∴可放入三角形三個(gè)角上,有C301A33=180中放法
再放4盆不同的玫瑰花,沒有限制,放在剩余4個(gè)位置,有A44=24中放法
∴不同的擺放方法為180×24=4320種.
故選B
因?yàn)槿杼m花不能放在一條直線,所以可先放在一個(gè)三角形的三個(gè)角上,分析圖中7個(gè)點(diǎn)可組成多少個(gè)三角形,7個(gè)點(diǎn)中任選3個(gè),再去掉共線的即可,然后,任取一個(gè)三角形,放三盆蘭花,剩下的位置放4盆不同的玫瑰花即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,若集合A={y|y=3﹣2x},B={x| ≤0},則A∩UB=(
A.(﹣∞,0)∪[2,3)
B.(﹣∞,0]∪(2,3)
C.[0,2)
D.[0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長(zhǎng)短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場(chǎng)順序,以下是他們四人的對(duì)話:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;

王老師聽了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場(chǎng)順序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)F1、F2分別在x軸上,離心率為 ,在其上有一動(dòng)點(diǎn)A,A到點(diǎn)F1距離的最小值是1,過A、F1作一個(gè)平行四邊形,頂點(diǎn)A、B、C、D都在橢圓E上,如圖所示.
(Ⅰ)求橢圓E的方程;
(Ⅱ)判斷ABCD能否為菱形,并說明理由.
(Ⅲ)當(dāng)ABCD的面積取到最大值時(shí),判斷ABCD的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車忽如一夜春風(fēng)來,遍布了各個(gè)城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)研機(jī)構(gòu)在該市隨機(jī)抽取了位市民進(jìn)行調(diào)查,得到的列聯(lián)表如下:

經(jīng)常使用

偶爾或不用

合計(jì)

歲及以下的人數(shù)

歲以上的人數(shù)

合計(jì)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為使用共享單車的情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取位市民,從這位市民中隨機(jī)選出位市民贈(zèng)送禮品,求選出的位市民中至少有位市民經(jīng)常使用共享單車的概率.

參考公式及數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點(diǎn)為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點(diǎn)為,連接,,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面,,

平面,所以為棱錐的高,

,知,

,

.

由(Ⅰ)知,,∴.

.

,可知平面,∴,

因此.

,,

的中點(diǎn),連結(jié),則,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是 . (寫出所有正確說法的序號(hào))
①若p是q的充分不必要條件,則p是q的必要不充分條件;
②命題“x∈R,x2+1>3x”的否定是“x∈R,x2+1<3x”;
③設(shè)x,y∈R.命題“若xy=0,則x2+y2=0”的否命題是真命題;
④若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱ABCD﹣A1B1C1D1底面是邊長(zhǎng)為1的正方形,高AA1= ,點(diǎn)A是平面α內(nèi)的一個(gè)定點(diǎn),AA1與α所成角為 ,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD﹣A1B1C1D1按要求運(yùn)動(dòng)時(shí)(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過的區(qū)域的面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知存在常數(shù),那么函數(shù)上是減函數(shù),在上是增函數(shù),再由函數(shù)的奇偶性可知在上是增函數(shù),在上是減函數(shù).

(1)判斷函數(shù)的單調(diào)性,并證明:

(2)將前述的函數(shù)推廣為更為一般形式的函數(shù),使都是的特例,研究的單調(diào)性(只須歸納出結(jié)論,不必推理證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案