已知等差數(shù)列{an}中,a1+a3=a4=8,則a6的值是(  )
A、10B、12C、8D、16
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項公式由已知條件列出方程組求出首項和公差,由此能求出結(jié)果.
解答: 解:等差數(shù)列{an}中,∵a1+a3=a4=8,
2a1+2d=8
a1+3d=8
,解得a1=2,d=2,
∴a6=2+5×2=12.
故選:B.
點評:本題考查等差數(shù)列的第6項的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

圓錐的側(cè)面展開圖是一個半圓,則圓錐軸截面的頂角的大小為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2+x-6≤0的解集是( 。
A、{x|x≥x-3}
B、{x|-2≤x≤3}
C、{x|x≤2}
D、{x|-3≤x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l經(jīng)過點M(-1,2),且傾斜角為
π
6
,則直線l的一個參數(shù)方程為(其中t為參數(shù))( 。
A、
x=-1+
1
2
t
y=2+
3
2
t
B、
x=-1+
3
2
t
y=2+
1
2
t
C、
x=2+
1
2
t
y=-1+
3
2
t
D、
x=2+
3
2
t
y=-1+
1
2
t

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關(guān)于確定平面的幾個說法,正確的個數(shù)是( 。
①經(jīng)過一條直線和一個點可以確定一個平面;
②圓心和圓上任意兩點可以確定一個平面;
③兩兩相交的三條直線可以確定一個平面;
④梯形可以確定一個平面.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一機器可以按各種不同的速度運轉(zhuǎn),其生產(chǎn)物件有一些會有缺點,每小時生產(chǎn)有缺點物件的多少隨機器運轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位轉(zhuǎn)/秒),用y表示每小時生產(chǎn)的有缺點物件個數(shù),現(xiàn)觀測得到(x,y)的4組觀測值為(8,5),(12,8),(14,9),(16,11).
(1)假定y與x之間有線性相關(guān)關(guān)系,求y對x的回歸直線方程.
(2)若實際生產(chǎn)中所容許的每小時最大有缺點物件數(shù)為10,則機器的速度不得超過多少轉(zhuǎn)/秒?(精確到1轉(zhuǎn)/秒)
(參考公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

泉州某魚苗養(yǎng)殖戶,由于受養(yǎng)殖技術(shù)水平和環(huán)境等因素的制約,會出現(xiàn)一些魚苗的死亡,根據(jù)以往經(jīng)驗,魚苗的死亡數(shù)p(萬條)與月養(yǎng)殖數(shù)x(萬條)之間滿足關(guān)系:P=
x2
6
,(1≤x≤4)
x+
3
x
-
25
12
,(x≥4)
,已知每成活1萬條魚苗可以盈利2萬元,但每死亡1萬條魚苗講虧損1萬元.
(Ⅰ)試將該養(yǎng)殖戶每月養(yǎng)殖魚苗所獲得的利潤T(萬元)表示為月養(yǎng)殖量x(萬條的函數(shù));
(Ⅱ)該養(yǎng)殖戶魚苗的月養(yǎng)殖量是多少時獲得的利潤最大,最大利潤是多少?(利潤=盈利-虧損)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=a-
b
4x+1
的圖象過點(
1
2
,
1
3
)和(1,
3
5
).
(1)求常數(shù)a,b的值;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由;
(3)解不等式f(2x-3)+f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,有一塊半橢圓形鋼板,其長半軸長為2r,短半軸長為r,計劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點在橢圓上,記CD=2x,梯形面積為S.
(1)求面積S以x為自變量的函數(shù)式,并寫出其定義域;
(2)求S2的最大值.

查看答案和解析>>

同步練習冊答案