(本題滿分16分)
已知橢圓的左頂點和右焦點分別為,右準線為直線,圓D:.
(1)若點在圓D上,且橢圓的離心率為,求橢圓C的方程;
(2)若直線上存在點Q,使為等腰三角形,求橢圓C的離心率的取值范圍;
(3)若點在(1)中的橢圓C上,且過點P可作圓D的兩條切線,切點分別為M、N,求弦長MN的取值范圍.
解(1)對,令,則.
所以,, ……………………………………2分
又因為,,所以,, ……………………3分
……………………………………4分
所以,橢圓的方程為:. ……………………5分
(2)由圖知為等腰三角形
………………………………7分
所以,,
,
又,所以,即橢圓離心率取值范圍為.……10分
(3)連交于,連,則由圓的幾何性質(zhì)知:為的中點,,.
所以,
⊙:,
所以, …………………………………13分
設(shè),則且
所以,
所以, ……………………………………15分
所以,. …………………………………16分
另解:設(shè),則且
圓D:,所以直線的方程:
即: …………………………………12分
…………………15分
…………………………………16分
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com