【題目】已知橢圓兩焦點(diǎn) ,并且經(jīng)過點(diǎn) .
(1)求橢圓的方程;
(2)若過點(diǎn)A(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.
【答案】
(1)解:因?yàn)闄E圓的焦點(diǎn)在x上,
所以設(shè)橢圓方程為 (a>b>0),
由定義得 ,
∴a=2,b2=4﹣3=1,所以橢圓方程為 ;
(2)解:由題意知直線l的斜率存在且不為零,設(shè)l方程為y=kx+2(k≠0),
設(shè)M(x1,y1),N(x2,y2),
由 整理得(1+4k2)x2+16kx+12=0,
由△=256k2﹣48(1+4k2)>0,得 ;
,
令 ,
∵x1x2>0,∴x1,x2同號(hào),∴ ∴x1=λx2,
∴ ,
∴
∴
∵ ∴ ,解得 ,
∵0<λ<1∴ ,
所以△OAM與△OAN面積之比的取值范圍是 .
【解析】(1)設(shè)橢圓方程為 (a>b>0),運(yùn)用橢圓的定義,可得a=2,結(jié)合a,b,c的關(guān)系,求得b,進(jìn)而得到橢圓方程;(2)設(shè)l方程為y=kx+2(k≠0),M(x1 , y1),N(x2 , y2),代入橢圓方程,運(yùn)用判別式大于0和韋達(dá)定理,令 ,代入化簡(jiǎn)整理,運(yùn)用不等式的性質(zhì),即可得到所求范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(1)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計(jì) | |
男 | 15 | ||
女 | 45 | ||
合計(jì) |
(2)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中,用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中的“讀書謎”的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,已知A(﹣2,0),直角頂點(diǎn)B(0,﹣2 ),點(diǎn)C在x軸上.
(Ⅰ)求Rt△ABC外接圓的方程;
(Ⅱ)求過點(diǎn)(﹣4,0)且與Rt△ABC外接圓相切的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定義在[a﹣6,2a]上的奇函數(shù),若 ,則g(1)=( )
A.0
B.﹣3
C.1
D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論: ①函數(shù) 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過點(diǎn)A(1,2)且在坐標(biāo)軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側(cè)面積等于球的表面積.
其中正確的結(jié)論序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(k﹣2)x2+2kx﹣3. (Ⅰ)當(dāng)k=4時(shí),求f(x)在區(qū)間(﹣4,1)上的值域;
(Ⅱ)若函數(shù)f(x)在(0,+∞)上至少有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)若f(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力部門需在A、B兩地之間架設(shè)高壓電線,因地理?xiàng)l件限制,不能直接測(cè)量A、B兩地距離.現(xiàn)測(cè)量人員在相距 km的C、D兩地(假設(shè)A、B、C、D在同一平面上)測(cè)得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如圖),假如考慮到電線的自然下垂和施工損耗等原因,實(shí)際所須電線長(zhǎng)度為A、B距離的 倍,問施工單位應(yīng)該準(zhǔn)備多長(zhǎng)的電線?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com