ABCD是平行四邊形,已知點(diǎn)A(-1,3)和C(-3,2),點(diǎn)D在直線x-3y=1上移動(dòng),求點(diǎn)B的軌跡方程.
考點(diǎn):與直線有關(guān)的動(dòng)點(diǎn)軌跡方程
專題:直線與圓
分析:根據(jù)平行四邊形的性質(zhì),利用代入法即可求點(diǎn)B的軌跡方程.
解答: 解:分別設(shè)B(x,y),D(x0,y0),
∵ABCD為平行四邊形,
AB
=
DC
,
又∵A(-1,3)和C(-3,2),
x+1=-3-x0
y-3=2-y0

x0=-x-4
y0=5-y
,
∵點(diǎn)D在直線x-3y=1上,
∴(-x-4)-3(5-y)=1,
化簡(jiǎn)得所求直線方程為x-3y+20=0.
點(diǎn)評(píng):本題主要考查平行四邊形的性質(zhì),代入法求軌跡方程,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列曲線的離心率是
2
2
的是( 。
A、
x2
2
+
y2
4
=1
B、
x2
4
+
y2
6
=1
C、
x2
2
+
y2
6
=1
D、
x2
4
+
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩點(diǎn)A(1,1)和B(2,-2)且圓心C在直線L:x-y+1=0上的圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

佛山某中學(xué)高三(1)班排球隊(duì)和籃球隊(duì)各有10名同學(xué),現(xiàn)測(cè)得排球隊(duì)10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊(duì)10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(Ⅰ) 請(qǐng)把兩隊(duì)身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個(gè)隊(duì)的身高數(shù)據(jù)方差較。o需計(jì)算);
(Ⅱ) 現(xiàn)從兩隊(duì)所有身高超過178cm的同學(xué)中隨機(jī)抽取三名同學(xué),則恰好兩人來自排球隊(duì)一人來自籃球隊(duì)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R
i
j
為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量
a
=(x+5)
i
+y
j
,
b
=(x-5)
i
+y
j
,|
a
|-|
b
|=8
,求點(diǎn)M(x,y)的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x
),cos2x),定義函數(shù)f(x)=
OP
OQ

(1)求函數(shù)f(x)的表達(dá)式,并指出其最大值和最小值;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+x2 (a為實(shí)常數(shù)).
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時(shí),討論方程f(x)=0根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列關(guān)于x的不等式的解集:
(1)-x2+7x>6;
(2)x2-(2m+1)x+m2+m<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

和直線4x-3y-1=0平行,且在y軸上的截距是
1
3
的直線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案