(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面;
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點(diǎn),在上是否存在一點(diǎn),使得∥平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)證明:以分別為軸建立空間直角坐標(biāo)系, 則,

,

,且相交于,
平面.……………………………3分
(Ⅱ)∵平面, 是平面的一個(gè)法向量,  
設(shè)平面的一個(gè)法向量,
 取="(1,1,2),  "
則cosθ===. …………………………………6分 
(Ⅲ)∵,設(shè),上一點(diǎn),則
∥平面,
.   
∴當(dāng)時(shí),∥平面. …………………………………………9分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是空間三條不同的直線,則下列命題正確的是(  )
A.,則B.,則
C.,則共面D.相交,相交,則共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直線平面,垂足為,正四面體的棱長(zhǎng)為4,在平面內(nèi),
是直線上的動(dòng)點(diǎn),則當(dāng)的距離為最大時(shí),正四面體在平面上的射影面
積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)m、n是兩條不同的直線,、是兩個(gè)不同的平面,給出下列四個(gè)命題.
①若,則;
②若,,,則;
③若,則
④若,則.
其中正確命題的序號(hào)是                           (把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在邊長(zhǎng)為2的菱形ABCD中,  ,現(xiàn)將沿BD翻折至,使二面角的大小為,求和平面BDC所成角的正弦值是;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.已知正四面體的高為H,它的內(nèi)切球半徑為R,則R︰H=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,且,=,的中點(diǎn). 求:
(Ⅰ) 異面直線CM與PD所成的角的余弦值;
(Ⅱ)直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知直角三角形ABC的斜邊長(zhǎng)AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當(dāng)∠A=30°時(shí),求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

高為的四棱錐-的底面是邊長(zhǎng)為1的正方形,點(diǎn)、、、均在半徑為1的同一球面上,則底面的中心與頂點(diǎn)之間的距離為_(kāi)_________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案