如圖,在三棱錐P-ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.
(Ⅰ)求直線PC與平面ABC所成角的大小;
(Ⅱ)求二面角B-AP-C的大小.

【答案】分析:解法一(Ⅰ)設(shè)AB中點(diǎn)為D,AD中點(diǎn)為O,連接OC,OP,CD.可以證出∠OCP為直線PC與平面ABC所成的角.不妨設(shè)PA=2,則OD=1,OP=,AB=4.在RT△OCP中求解.
(Ⅱ)以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系,利用平面APC的一個法向量與面ABP的一個法向量求解.
解法二(Ⅰ)設(shè)AB中點(diǎn)為D,連接CD.以O(shè)為坐標(biāo)原點(diǎn),OB,OE,OP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系O-xyz.利用與平面ABC的一個法向量夾角求解.
(Ⅱ)分別求出平面APC,平面ABP的一個法向量,利用兩法向量夾角求解.
解答:解法一
(Ⅰ)設(shè)AB中點(diǎn)為D,AD中點(diǎn)為O,連接OC,OP,CD.
因?yàn)锳B=BC=CA,所以CD⊥AB,
因?yàn)椤螦PB=90°,∠PAB=60°,所以△PAD為等邊三角形,所以PO⊥AD,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD.
PO⊥平面ABC,∠OCP為直線PC與平面ABC所成的角
不妨設(shè)PA=2,則OD=1,OP=,AB=4.
所以CD=2,OC===
在RT△OCP中,tan∠OCP===
故直線PC與平面ABC所成的角的大小為arctan
(Ⅱ)過D作DE⊥AP于E,連接CE.
由已知,可得CD⊥平面PAB.根據(jù)三垂線定理知,CE⊥PA.所以∠CED為二面角
B-AP-C的平面角.由(Ⅰ)知,DE=,在RT△CDE中,tan∠CED===2,故二面角B-AP-C的大小為arctan2.
解法二:(Ⅰ)設(shè)AB中點(diǎn)為D,連接CD.因?yàn)镺在AB上,且O為P在平面ABC內(nèi)的射影,
所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因?yàn)锳B=BC=CA,所以CD⊥AB,設(shè)E為AC中點(diǎn),則EO∥CD,從而OE⊥PO,OE⊥AB.
如圖,以O(shè)為坐標(biāo)原點(diǎn),OB,OE,OP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系O-xyz.不妨設(shè)PA=2,由已知可得,AB=4,OA=OD=1,OP=,
CD=2,所以O(shè)(0,0,0),A(-1,0,0),C(1,2,0),P(0,0,),所以=(-1,-2,=(0,0,)為平面ABC的一個法向量.
設(shè)α為直線PC與平面ABC所成的角,則sinα===.故直線PC與平面ABC所成的角大小為arcsin
(Ⅱ)由(Ⅰ)知,=(1,0,),=(2,2,0).
設(shè)平面APC的一個法向量為=(x,y,z),則由得出,
取x=-,則y=1,z=1,所以=(-,1,1).設(shè)二面角B-AP-C的平面角為β,易知β為銳角.
而面ABP的一個法向量為=(0,1,0),則cosβ===
故二面角B-AP-C的大小為arccos
點(diǎn)評:本題考查線面關(guān)系,直線與平面所成的角、二面角等基礎(chǔ)知識,考查思維能力、空間想象能力,并考查應(yīng)用向量知識解決數(shù)學(xué)問題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時,tanθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點(diǎn)D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當(dāng)二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習(xí)冊答案