精英家教網 > 高中數學 > 題目詳情

分別是橢圓的左右焦點,上一點且軸垂直,直線的另一個交點為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

(1);(2)

解析試題分析:(1)由已知得,故直線的斜率為,結合得關于的方程,解方程得離心率的值;(2)依題意,直線軸的交點是線段的中點.故,①
又因為,得,從而得三個點坐標的關系,將點的坐標表示出來代入橢圓方程的,得另一個關于的方程并聯(lián)立方程①求即可.
(1)根據及題設知,.將代入,解得,
(舍去).故的離心率為
(2)由題意,原點的中點,軸,所以直線軸的交點是線段的中點.故,即.①由.設,由題意得,,則代入C的方程,得,②將①及代入②得
.解得,,故
考點:橢圓的標準方程和簡單幾何性質;2、中點坐標公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xoy中,已知橢圓C:=1(a>b≥1)的離心率e=,且橢圓C上的點到點Q (0,3)的距離最大值為4,過點M(3,0)的直線交橢圓C于點A、B.
(1)求橢圓C的方程。
(2)設P為橢圓上一點,且滿足(O為坐標原點),當|AB|<時,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點(4,-).
(1)求雙曲線方程;
(2)若點M(3,m)在雙曲線上,求證:·=0;
(3)求△F1MF2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點的直線與橢圓交于兩點(不是橢圓的頂點).點在橢圓上,且,直線軸、軸分別交于兩點.
(i)設直線的斜率分別為,證明存在常數使得,并求出的值;
(ii)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
如圖,已知雙曲線的右焦點,點分別在的兩條漸近線上,軸,(為坐標原點).

(1)求雙曲線的方程;
(2)過上一點的直線與直線相交于點,與直線相交于點,證明點上移動時,恒為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓)的左、右焦點為,右頂點為,上頂點為.已知
(1)求橢圓的離心率;
(2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點,為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點為線段的中點,試判斷直線與曲線的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案