已知P1(x,5),P2(2,y)所在直線上取一點P(1,1),使||2||,求P1、P2點的坐標。

 

答案:
解析:

∴ P1點的坐標(7,5),P2點的坐標(-2,-1).

∴ P1點的坐標(-5,5),P2點的坐標(-2,3).由于起點、終點、分點應相對理解,這個問題我們可從另一個角度去理解

如圖,||=2||,則P2點為的中點,應用中點公式

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)為Γ的三個頂點.
(1)若點M滿足
AM
=
1
2
(
AQ
+
AB
)
,求點M的坐標;
(2)設直線l1:y=k1x+p交橢圓Γ于C、D兩點,交直線l2:y=k2x于點E.若k1k2=-
b2
a2
,證明:E為CD的中點;
(3)設點P在橢圓Γ內(nèi)且不在x軸上,如何構作過PQ中點F的直線l,使得l與橢圓Γ的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,點P的坐標是(-8,-1),若橢圓Γ上的點P1、P2滿足
PP1
+
PP2
=
PQ
,求點P1、P2的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,焦點在x軸上的雙曲線的離心率為
5

(1)求其漸近線方程;
(2)過雙曲線上點P的直線分別交兩條漸近線于P1、P2兩點,且
P1P
=2
PP2
,S△OP1P2=9,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
,
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

已知P1(x,5),P2(2,y)所在直線上取一點P(11),使||2||,求P1、P2點的坐標。

 

查看答案和解析>>

同步練習冊答案