如圖,是邊長為2的正方形,平面,,,且.
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積。
(1)證明見解析;(2)證明見解析;(3).

試題分析:(1)記的交點為,連接,則可證,又,,故平面;      
(2)因⊥平面,得,又是正方形,所以,從而平面,又 ,故平面平面;
(3)由(2)知平面,且平面將多面體分成兩個四棱錐和四棱錐.即,分別求出四棱錐和四棱錐的體積即可求出多面體的體積. 
證明:(1)記的交點為,連接,則
所以,又,所以
所以四邊形是平行四邊形
所以,
,
平面;    

(2)因⊥平面,所以,
是正方形,所以
因為,,
所以平面
,
故平面平面;
(3)由(2)知平面,且平面將多面體分成兩個四棱錐和四棱錐,是直角梯形,
,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,,分別是棱,,
,的中點.求證:
(1)直線∥平面;
(2)直線⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中,側棱垂直底面,,
(1)求證:
(2)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點,動點F在側棱CC1上,且不與點C重合.
(1)當CF=1時,求證:EF⊥A1C;
(2)設二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.

(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,側面PAD是等邊三角形,其中,,平面底面,的中點.
 
(1)求證://平面;
(2)求證:;
(3)求與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設α、β、γ為彼此不重合的三個平面,l為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
③若直線l與平面α內的無數(shù)條直線垂直,則直線l與平面α垂直;
④若α內存在不共線的三點到β的距離相等,則平面α平行于平面β;
上面命題中,真命題的序號為________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在過正方體AC1的8個頂點中的3個頂點的平面中,能與三條棱CD 、A1D1、 BB1所成的角均相等的平面共有( 。
A.1 個       B.4 個        C.8 個         D.12個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則D到平面ABC的距離等于(   )
A.B.C.D.1

查看答案和解析>>

同步練習冊答案