精英家教網 > 高中數學 > 題目詳情

【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產品成功的概率分別為 .現安排甲組研發(fā)新產品A,乙組研發(fā)新產品B,設甲、乙兩組的研發(fā)相互獨立.
(1)求至少有一種新產品研發(fā)成功的概率;
(2)若新產品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產品B研發(fā)成功,預計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數學期望.

【答案】
(1)解:設至少有一種新產品研發(fā)成功的事件為事件A且事件B為事件A的對立事件,則事件B為一種新產品都沒有成功,

因為甲乙研發(fā)新產品成功的概率分別為

則P(B)= ,

再根據對立事件的概率之間的公式可得P(A)=1﹣P(B)=

故至少有一種新產品研發(fā)成功的概率為


(2)解:由題可得設企業(yè)可獲得利潤為X,則X的取值有0,120,100,220,

由獨立試驗的概率計算公式可得,

,

,

,

所以X的分布列如下:

X

0

120

100

220

P(x)

則數學期望E(X)= =140.


【解析】(1)利用對立事件的概率公式,計算即可,(2)求出企業(yè)利潤的分布列,再根據數學期望公式計算即可.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,部分對應值如下表,的導函數的圖象如圖所示,給出關于的下列命題:

①函數處取得極小值;

②函數是減函數,在是增函數;

③當時,函數有4個零點;

④如果當時,的最大值是2,那么的最小值為0.

其中所有的正確命題是__________(寫出正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣ ,
(1)當a= ,θ= 時,求f(x)在區(qū)間[0,π]上的最大值與最小值;
(2)若f( )=0,f(π)=1,求a,θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn,且2a5a3=13,S4=16.

(1)求數列{an}的前n項和Sn;

(2)設Tn(-1)iai,若對一切正整數n,不等式 λTn<[an1+(-1)n1an]·2n1 恒成立,求實數 λ 的取值范圍;

(3)是否存在正整數m,n(nm2),使得S2,SmS2,SnSm成等比數列?若存在,求出所有的mn;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,|an+1﹣an|=pn , n∈N*
(1)若{an}是遞增數列,且a1 , 2a2 , 3a3成等差數列,求p的值;
(2)若p= ,且{a2n1}是遞增數列,{a2n}是遞減數列,求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個包裝箱內有6件產品,其中4件正品,2件次品.現隨機抽出兩件產品,

1)求恰好有一件次品的概率.

2)求都是正品的概率.

3)求抽到次品的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數)與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。

I)求應從小學、中學、大學中分別抽取的學校數目。

II)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,

1)列出所有可能的抽取結果;

2)求抽取的2所學校均為小學的概率。

查看答案和解析>>

同步練習冊答案