【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產品成功的概率分別為 和 .現安排甲組研發(fā)新產品A,乙組研發(fā)新產品B,設甲、乙兩組的研發(fā)相互獨立.
(1)求至少有一種新產品研發(fā)成功的概率;
(2)若新產品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產品B研發(fā)成功,預計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數學期望.
【答案】
(1)解:設至少有一種新產品研發(fā)成功的事件為事件A且事件B為事件A的對立事件,則事件B為一種新產品都沒有成功,
因為甲乙研發(fā)新產品成功的概率分別為 和 .
則P(B)= ,
再根據對立事件的概率之間的公式可得P(A)=1﹣P(B)= ,
故至少有一種新產品研發(fā)成功的概率為 .
(2)解:由題可得設企業(yè)可獲得利潤為X,則X的取值有0,120,100,220,
由獨立試驗的概率計算公式可得,
,
,
,
,
所以X的分布列如下:
X | 0 | 120 | 100 | 220 |
P(x) |
則數學期望E(X)= =140.
【解析】(1)利用對立事件的概率公式,計算即可,(2)求出企業(yè)利潤的分布列,再根據數學期望公式計算即可.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為,部分對應值如下表,的導函數的圖象如圖所示,給出關于的下列命題:
①函數在處取得極小值;
②函數在是減函數,在是增函數;
③當時,函數有4個零點;
④如果當時,的最大值是2,那么的最小值為0.
其中所有的正確命題是__________(寫出正確命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣ , )
(1)當a= ,θ= 時,求f(x)在區(qū)間[0,π]上的最大值與最小值;
(2)若f( )=0,f(π)=1,求a,θ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn,且2a5-a3=13,S4=16.
(1)求數列{an}的前n項和Sn;
(2)設Tn=(-1)iai,若對一切正整數n,不等式 λTn<[an+1+(-1)n+1an]·2n-1 恒成立,求實數 λ 的取值范圍;
(3)是否存在正整數m,n(n>m>2),使得S2,Sm-S2,Sn-Sm成等比數列?若存在,求出所有的m,n;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x2+ex﹣ (x<0)與g(x)=x2+ln(x+a)圖象上存在關于y軸對稱的點,則a的取值范圍是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,|an+1﹣an|=pn , n∈N* .
(1)若{an}是遞增數列,且a1 , 2a2 , 3a3成等差數列,求p的值;
(2)若p= ,且{a2n﹣1}是遞增數列,{a2n}是遞減數列,求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個包裝箱內有6件產品,其中4件正品,2件次品.現隨機抽出兩件產品,
(1)求恰好有一件次品的概率.
(2)求都是正品的概率.
(3)求抽到次品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.
(1)求的直角坐標方程;
(2)直線(為參數)與曲線交于兩點,與軸交于,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)有小學21所,中學14所,大學7所,現采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。
(I)求應從小學、中學、大學中分別抽取的學校數目。
(II)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,
(1)列出所有可能的抽取結果;
(2)求抽取的2所學校均為小學的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com