設(shè)n為正整數(shù),f(n)=1+++…+,計(jì)算得f(2)=,f(4)>2,f(8)>,f(16)>3,觀察上述結(jié)果,可推測(cè)一般的結(jié)論為_______________________________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察下列算式:
13 =1,
23 =3+5,
33 = 7+9+11
43 ="13" +15 +17 +19 ,
… …
若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個(gè)數(shù),則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在中,兩直角邊分別為、,設(shè)為斜邊上的高,則,由此類比:三棱錐中的三條側(cè)棱、、兩兩垂直,且長度分別為、、,設(shè)棱錐底面上的高為,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系o-xyz中,經(jīng)過點(diǎn)A(1,2,3)且法向量為=(-1,-2,1)的平面的方程為____________ .
(化簡(jiǎn)后用關(guān)于x,y,z的一般式方程表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
平面直角坐標(biāo)系中,圓心在原點(diǎn),半徑為1的園的方程是.根據(jù)類比推理:空間直角坐標(biāo)系中,球心在原點(diǎn),半徑為1的球的方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察下列等式:
12=1,
12—22=—3,
12—22+32=6,
12—22+32—42=-10,
…………………
由以上等式推測(cè)到一個(gè)一般的結(jié)論:對(duì)于,12—22+32—42+…+(—1)n+1n2=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com