已知函數(shù)f(x+1)=f(x-1),當(dāng)0≤x≤1時(shí),f(x)=2x-1,則f(112.5)=
 
考點(diǎn):函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先求證函數(shù) f(x)為周期函數(shù),并求出其周期,然后根據(jù)條件求得即可.
解答: 解:∵f(x+1)=f(x-1),
∴f(x+1+1)=f(x+1-1)
∴f(x+2)=f(x),
∴f(x) 是周期為2的周期函數(shù).
當(dāng)0≤x≤1時(shí),f(x)=2x-1,
f(0.5)=2×0.5-1=0,
∴f(112.5)=(56×2+0.5)=f(0.5)=0.
故答案為:0.
點(diǎn)評(píng):本題考查了函數(shù)的周期性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足
an+1
an
=q,且q≠0,數(shù)列{bn}滿足bn=na1+(n-1)a2+(n-2)a3+…+2an-1+an(n∈N*),已知b1=m,b2=
3m
2
,其中m≠0:
(Ⅰ)當(dāng)m=1時(shí),求bn
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)于任意的正整數(shù)n,都有Sn2-4sn+3≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解高三學(xué)生的身體狀況,抽取了部分男生的體重,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖).已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第2小組的頻數(shù)為15,則抽取的男生總?cè)藬?shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(4x-2-x6的展開式中,常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)[x]表示不超過(guò)x的最大整數(shù),如[1.4]=1,[-1.1]=-2,若函數(shù)f(x)=
1-ex
1+ex
,則函數(shù)g(x)=[f(x)]+[f(-x)]的值域?yàn)?div id="yz8ied2" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=
1
3
,tanβ=-
1
7
,則tan(2α-β)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
cos15°-2sin15°
sin15°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要條件,則a的取值范圍是( 。
A、(-∞,0]∪[1,+∞)
B、(-1,0)
C、[-1,0]
D、(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三年級(jí)從一次模擬考試中隨機(jī)抽取50名學(xué)生(男、女生各25名),將數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),所得數(shù)據(jù)的莖葉圖如圖所示,以組距為10將數(shù)據(jù)按[80,90),[90,100),…,[130,140),[140,150]分成七組繪制頻率分布直方圖,則落在區(qū)間[130,140)的小矩形的面積為( 。
A、1.2B、6
C、0012D、0.12

查看答案和解析>>

同步練習(xí)冊(cè)答案