【題目】已知函數(shù),,且與的圖象有一個斜率為1的公切線(為自然對數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),討論函數(shù)的零點個數(shù).
【答案】(1)(2)見解析
【解析】
(1)由與的圖象有一個斜率為1的公切線,分別對與求導(dǎo)并求出切線方程,列出等量關(guān)系可得;
(2)利用換元將轉(zhuǎn)化為二次函數(shù),分類討論對其單調(diào)性,對圖像特點進(jìn)行分析,分情況討論出函數(shù)的零點個數(shù).
(1)可得.
在處的切線方程為,
即.
.
在處的切線方程為,
故
可得.
(2)由(1)可得,
,
令,則,
,
時,有兩根,
且,
,
得:,
在上,,
在上,,
此時,.
又時,時,.
故在和上,
各有1個零點.
時,
最小值為,故僅有1個零點.
時,.
其中,同,
在與上,
各有1個零點,
時,,僅在有1個零點,
時,對方程.
方程有兩個正根,.
在上,,在上,,在,.
由,可得,
故.
,
故.
故在上,,
在上,,
在上,有1個零點:.
時,恒成立,
為增函數(shù),僅有1個零點:.
綜上,或時,有1個零點,
或時,有2個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,,點是平面內(nèi)的動點,且,記的軌跡是.
(1)求曲線的方程;
(2)過點引直線交曲線于兩點,點關(guān)于軸的對稱點為,證明直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點圖判斷,與(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計算結(jié)果精確到小數(shù)點后第三位)
(2)根據(jù)以往統(tǒng)計,該地每年平均溫度達(dá)到28℃以上時紅鈴蟲會造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.
②當(dāng)取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.
附:線性回歸方程系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線與橢圓的兩交點間距離為.
(1)求橢圓的方程;
(2)如圖,設(shè)是橢圓上的一動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,且經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交兩點,是坐標(biāo)原點,分別過點作,的平行線,兩平行線的交點剛好在橢圓上,判斷是否為定值?若為定值,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點在直線上
(Ⅰ)求的值和直線的直角坐標(biāo)方程及的參數(shù)方程;
(Ⅱ)已知曲線的參數(shù)方程為,(為參數(shù)),直線與交于兩點,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)若在(1)的條件下,存在實數(shù),使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計算該數(shù)列的項時,若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與,重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com