設(shè)集合A⊆R,如果實數(shù)x0滿足:對?r>0,總?x∈A,使得0<|x-x0|<r,則稱x0為集合A的聚點.給定下列四個集合:
①Z;  
②{x∈R|x≠0};   
③{
n
n+1
|n∈Z,n≥0};   
④{
1
n
|n∈Z,n≠0}.
上述四個集合中,以0為聚點的集合是(  )
分析:由已知中關(guān)于集合聚點的定義,我們逐一分析四個集合中元素的性質(zhì),并判斷是否滿足集合聚點的定義,進而得到答案.
解答:解:①中,對于某個a<1,比如a=0.5,此時對任意的x∈Z,都有|x-0|=0或者|x-0|≥1,也就是說不可能0<|x-0|<0.5,從而0不是整數(shù)集Z的聚點
②集合{x|x∈R,x≠0},對任意的a,都存在x=
a
2
(實際上任意比a小得數(shù)都可以),使得0<|x|=
a
2
<a
∴0是集合{x|x∈R,x≠0}的聚點
③集合{
n
n+1
|n∈Z,n≥0}中的元素是極限為1的數(shù)列,
除了第一項0之外,其余的都至少比0大
1
2
,
∴在a<
1
2
的時候,不存在滿足得0<|x|<a的x,
∴0不是集合{
n
n+1
|n∈Z,n≥0}的聚點
④集合{
1
n
|n∈Z,n≠0}中的元素是極限為0的數(shù)列,
對于任意的a>0,存在n>
1
a
,使0<|x|=
1
n
<a
∴0是集合{
1
n
|n∈Z,n≠0}的聚點
故選D.
點評:本題考查的知識點是集合元素的性質(zhì),其中正確理解新定義--集合的聚點的含義,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A⊆R,如果x0∈R滿足:對任意a>0,都存在x∈A,使得0<|x-x0|<a,那么稱x0為集合A的一個聚點,則在下列集合中:(1)z+∪z-;(2)R+∪R-;(3){x|x=
1
n
,n∈N*}
;(4){x|x=
n
n+1
,n∈N*}
,以0為聚點的集合有
(2)(3)
(2)(3)

(寫出所有你認為正確的結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)集合A⊆R,如果實數(shù)x0滿足:對?r>0,總?x∈A,使得0<|x-x0|<r,則稱x0為集合A的聚點.給定下列四個集合:
①Z; 
②{x∈R|x≠0}; 
③{數(shù)學(xué)公式|n∈Z,n≥0}; 
④{數(shù)學(xué)公式|n∈Z,n≠0}.
上述四個集合中,以0為聚點的集合是


  1. A.
    ①③
  2. B.
    ②③
  3. C.
    ①④
  4. D.
    ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)集合A⊆R,如果實數(shù)x0滿足:對?r>0,總?x∈A,使得0<|x-x0|<r,則稱x0為集合A的聚點.給定下列四個集合:
①Z;  
②{x∈R|x≠0};   
③{
n
n+1
|n∈Z,n≥0};   
④{
1
n
|n∈Z,n≠0}.
上述四個集合中,以0為聚點的集合是( 。
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)集合A⊆R,如果實數(shù)x滿足:對?r>0,總?x∈A,使得0<|x-x|<r,則稱x為集合A的聚點.給定下列四個集合:
①Z;  
②{x∈R|x≠0};   
③{|n∈Z,n≥0};   
④{|n∈Z,n≠0}.
上述四個集合中,以0為聚點的集合是( )
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

同步練習(xí)冊答案