雙曲線的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,若PF1⊥PF2,則點(diǎn)P到x軸的距離為   
【答案】分析:設(shè)出點(diǎn)P坐標(biāo)(x,y),由PF1⊥PF2得到一個(gè)方程,將此方程代入雙曲線的方程,消去x,求出|y|的值.
解答:解:設(shè)點(diǎn)P(x,y),
∵F1(-5,0)、F2(5,0),PF1⊥PF2,
=-1,
∴x2+y2=25   ①,

-=1,
∴y2=,
∴|y|=,
∴P到x軸的距離是
點(diǎn)評:本題考查雙曲線的方程、性質(zhì)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,
7
)

的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)第二輪復(fù)習(xí)熱點(diǎn)專題測試卷:平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)第二輪執(zhí)點(diǎn)專題測試、平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的兩個(gè)焦點(diǎn)為F­1,F(xiàn)­2 ,點(diǎn)P在雙曲線上,△的面積為,則                              

A.2                       B.                        C.-2                   D.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的兩個(gè)焦點(diǎn)為F­1,F(xiàn)­2 ,點(diǎn)P在雙曲線上,的面積為,則                     

A.2                   B.               C.-2               D.-

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷