如圖,在△中,,,點(diǎn)上,.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面

(Ⅰ)求證:平面
(Ⅱ)設(shè),當(dāng)為何值時(shí),二面角的大小為

(1)要證明線面平行,則可以根據(jù)來(lái)得到證明。
(2)

解析試題分析:解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/b/1n54d4.png" style="vertical-align:middle;" />,平面,所以平面.    …2分
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/43/1/jaiiv1.png" style="vertical-align:middle;" />平面,且,所以平面
同理,平面,所以,從而平面.  …4分
所以平面平面,從而平面.               …6分
(Ⅱ)以C為原點(diǎn),所在直線為軸,所在直線為軸,過(guò)C且垂直于平面的直線為軸,建立空間直角坐標(biāo)系,如圖.                     …7分

,,
,
,
,

平面的一個(gè)法向量,                           …9分
平面的一個(gè)法向量.                              …11分
,                        …13分
化簡(jiǎn)得,解得.                 …15分
考點(diǎn):線面平行和二面角的求解
點(diǎn)評(píng):解決的關(guān)鍵是利用空間向量法來(lái)得到空間中的二面角的表示,以及結(jié)合判定定理得到線面的垂直的證明。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=,AB=2CD=8.

(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面,的中點(diǎn).

(Ⅰ)求證://平面
(Ⅱ)若平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AEBE,BE = BC = 1,AE = ,M為線段AB的中點(diǎn),N為線段DE的中點(diǎn),P為線段AE的中點(diǎn)。

(1)求證:MNEA;
(2)求四棱錐MADNP的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,平面ABCD,底面ABCD是菱形,,.

(1)求證:平面PAC;
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.

(1)求證:平面EFGH;
(2)求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為4的正方形與正三角形所在的平面相互垂直,且、
分別為、中點(diǎn).

(1)求證: ;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動(dòng)點(diǎn)。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當(dāng)點(diǎn)E在何位置時(shí),BD⊥AE?證明你的結(jié)論;
(Ⅲ)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖:直三棱柱ABC中,, ,D為AB中點(diǎn)。

(1)求證:;
(2)求證:∥平面
(3)求C1到平面A1CD的距離。

查看答案和解析>>

同步練習(xí)冊(cè)答案