解:(1)∵a
2=6且
=n,
∴
=1,
=2,
=3,..1′
解得a
1=1,a
3=15,a
4=28,…3′
(2)由此猜想a
n=n(2n-1)…4′
下面用數(shù)學歸納法加以證明:
①當n=1時,a
1=1×(2×1-1)=1,結(jié)論正確;
當n=2時,a
2=2×(2×2-1)=6,結(jié)論正確;…5′
②假設(shè)n=k(k≥2)時結(jié)論正確,即a
k=k(2k-1),
則當n=k+1時,
∵
=k,
∴(k-1)a
k+1=(k+1)a
k-(k+1)
=(k+1)k(2k-1)-(k+1)
=(k+1)(2k
2-k-1)
=(k+1)(2k+1)(k-1),
∵k-1≠0,
∴a
k+1=(k+1)(2k+1)=(k+1)[2(k+1)-1],
即當n=k+1時,結(jié)論正確…7′
由①②可知,數(shù)列{a
n}的通項公式為:a
n=n(2n-1)…8′
(3)∵
=
=
[
-
]…10′
∴
(
+
+…+
)=
(1-
)=
…12′
分析:(1)由a
2=6,
=n,可求得a
1=1,a
3=15,a
4=28.
(2)由(1)可猜想a
n=n(2n-1),然后用數(shù)學歸納法證明即可;
(3))先用裂項法求得
=
[
-
],從而得到
+
+…+
=
(1-
),再取極限即可得答案.
點評:本題考查數(shù)學歸納法,歸納猜想出a
n=n(2n-1)是關(guān)鍵,著重考查數(shù)學歸納法的證明與裂項法求和,考查運算能力,屬于中檔題.