精英家教網 > 高中數學 > 題目詳情

【題目】已知角x始邊與x軸的非負半軸重合,與圓x2+y2=4相交于點A,終邊與圓x2+y2=4相交于點B,點B在x軸上的射影為C,△ABC的面積為S(x),函數y=S(x)的圖象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:如圖A(2,0),在RT△BOC中,

|BC|=2|sinx|,|OC|=2|cosx|,

∴△ABC的面積為S(x)= |BC||AC|≥0,

所以排除C、D;

選項A、B的區(qū)別是△ABC的面積為S(x)何時取到最大值?

下面結合選項A、B中的圖象利用特值驗證:

當x= 時,△ABC的面積為S(x)= =2,

當x= 時,|BC|=2|sin |= ,|OC|=2|cos |= ,

則|AC|=2+

∴△ABC的面積為S(x)= = ,

綜上可知,答案B的圖象正確,

故選:B.

【考點精析】本題主要考查了直線與圓的三種位置關系的相關知識點,需要掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當m=7時,求函數f(x)的定義域;
(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2 , P為橢圓C1與雙曲線C2在第一象限內的一個公共點,設橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為(
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為坐標原點,橢圓的左、右焦點分別為,離心率,橢圓上的點到焦點的最短距離為

(1)求橢圓C的標準方程;

(2)T為直線上任意一點,過的直線交橢圓C于點P,Q,且為拋物線,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線xy10被圓(x1)2y23截得的弦長等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數f(x)= (其中e為自然對數的底數),h(x)=x﹣
(I)求函數f(x)的單調區(qū)間;
(II)設g(x)= ,.已知直線y= 是曲線y=f(x)的切線,且函數g(x)在(0,+∞)上是增函數.
(i)求實數a的值;
(ii)求實數c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線l經過拋物線的焦點,若直線l與拋物線和圓的交點自上而下依次為A,B,C,D,則|AB|+|CD|=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為4+ 的△ABC滿足sinA:sinB:sinC=( ﹣1): : ( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案