求過兩直線2x-3y+10=0和3x+4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.
分析:聯(lián)立方程可得交點(diǎn),由垂直關(guān)系可得直線的斜率,由點(diǎn)斜式可寫方程,化為一般式即可.
解答:解:聯(lián)立
2x-3y+10=0
3x+4y-2=0
,解得
x=-2
y=2
,
即所求直線過點(diǎn)(-2,2),
又直線3x-2y+4=0的斜率為
3
2
,故所求直線的斜率k=-
2
3

由點(diǎn)斜式可得y-2=-
2
3
(x+2),
化為一般式可得:2x+3y-2=0,
故所求直線的方程為:2x+3y-2=0
點(diǎn)評(píng):本題考查直線交點(diǎn)的求解,以及互相垂直的直線的斜率的關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過兩直線2x-3y+10=0和3x+4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省金華一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

求過兩直線2x-3y+10=0和3x+4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省西雙版納州景洪市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

求過兩直線2x-3y+10=0和3x+4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省金華一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

求過兩直線2x-3y+10=0和3x+4y-2=0的交點(diǎn),且垂直于直線3x-2y+4=0的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案