(本小題滿分12分)雙曲線C與橢圓有相同的焦點,直線y=的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(0,4)的直線,交雙曲線于A,B兩點,交x軸于點(點與的頂點不重合)。當(dāng) =,且時,求點的坐標(biāo)
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)設(shè)雙曲線方程為
由橢圓 求得兩焦點為,對于雙曲線
為雙曲線的一條漸近線, ,
又因為,可以解得
雙曲線的方程為.                                        ……4分
(Ⅱ)由題意知直線的斜率存在且不等于零
設(shè)的方程:,,則,
,
,
.                                 ……8分
在雙曲線上,

同理有:
則直線過頂點,不合題意
是二次方程的兩根,

,
此時 
所求的坐標(biāo)為.                                             ……12分
點評:橢圓與雙曲線混合運算時,要注意橢圓中而雙曲線中,不要弄混了;而考查直線與圓錐曲線的位置關(guān)系時,要注意直線的斜率是否存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知過點的動直線與拋物線相交于兩點,當(dāng)直線的斜率是時,
(1)求拋物線的方程;(5分)
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍。(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列雙曲線,離心率的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知雙曲線以長方形ABCD的頂點A、B為左、右焦點,且雙曲線過C、D兩頂點.若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左焦點,為坐標(biāo)原點,點在橢圓上,點在橢圓的右準(zhǔn)線上,若,則橢圓的離心率為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知,動點滿足,設(shè)動點的軌跡是曲線,直線與曲線交于兩點.(1)求曲線的方程;
(2)若,求實數(shù)的值;
(3)過點作直線垂直,且直線與曲線交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一動點到y(tǒng)軸的距離比到點(2,0)的距離小2,則此動點的軌跡方程為___________.

查看答案和解析>>

同步練習(xí)冊答案