精英家教網 > 高中數學 > 題目詳情

定義式子運算為,將函數的圖像向左平移個單位,所得圖像對應的函數為偶函數,則的最小值為  (   )

A.B.C.D.

C

解析考點:函數y=Asin(ωx+φ)的圖象變換;二階矩陣.
專題:計算題.
分析:先根據題意確定函數f(x)的解析式,然后根據左加右減的原則得到平移后的解析式,再根據偶函數的性質可確定n的值.
解答:解:由題意可知f(x)=cosx-sinx=2cos(x+
將函數f(x)的圖象向左平移n(n>0)個單位后得到y(tǒng)=2cos(x+n+)為偶函數
∴2cos(-x+n+)=2cos(x+n+
∴cosxcos(n+)+sinxsin(n+)=cosxcos(n+)-sinxsin(n+
∴sinxsin(n+)=-sinxsin(n+
∴sinxsin(n+)=0∴sin(n+)=0∴n+=kπ
∴n=-+kπ
n大于0的最小值等于
故選C.
點評:本題主要考查兩角和與差的余弦公式、三角函數的奇偶性和平移變換.平移時根據左加右減上加下減的原則進行平移.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:單選題

P從點O出發(fā),按逆時針方向沿周長為l的圖形運動一周,
O,P兩點連線的距離y與點P走過的路程x的函數關系如圖,
那么點P所走的圖形是(   )

 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知是R上的偶函數,且在區(qū)間上是增函數,若,那么實數的取值范圍是(    )

A.(-1,0) B.(-∞,0)∪(3,+∞) C.(3,+∞) D.(0,3)

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

函數圖象如圖,則函數的單調遞增區(qū)間為

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

在下列函數中,既是上的增函數,又是以為最小正周期的偶函數的是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

是函數的反函數,則使成立的x的取值范圍為      (   )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

給出下列三個函數圖像:

 
 

它們對應的函數表達式分別滿足下列性質中的至少一條:
①對任意實數都有成立;     ②對任意實數都有成立;
③對任意實數都有成立. 則下列對應關系最恰當的是                                   
A.和①,和②,c和③ B.c和①,b和②,和③
C.和①,和②,和③ D.b和①,c和②,和③

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

定義運算:已知函數,則函數的最小正周期是

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

若函數的定義域為A,函數,的值域為B,則AB為

A. B. C. D. 

查看答案和解析>>

同步練習冊答案