已知曲線f(x)=ax3+b經(jīng)過點(0,1),且在x=1處的切線方程是y=3x-1,
(1)求y=f(x)的解析式;
(2)求曲線過點(-1,0)的切線的方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程,函數(shù)解析式的求解及常用方法
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求出導(dǎo)數(shù),則有f′(1)=3a,再由條件得3a=3,又f(0)=1,即可得到解析式;
(2)設(shè)切點為(m,n),則由斜率公式得到3m2=
n
m+1
,f(m)=n,即m3+1=n.解出m,再由點斜式方程,即可得到.
解答: (1)解:因為f′(x)=3ax2
所以f′(1)=3a,又因為函數(shù)在f(x)處的切線方程是y=3x-1
所以3a=3⇒a=1,
又因為f(x)=ax3+b的圖象過(0,1)
所以b=1,
所以f(x)=x3+1;
(2)解:設(shè)切點為(m,n),
f′(x)=3x2,則3m2=
n
m+1
,
f(m)=n,即m3+1=n.
解得m=-1或
1
2

故切線的斜率為3或
3
4

所以由點斜式可得切線方程為y=3x+3或y=
3
4
x+
3
4
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查導(dǎo)數(shù)的幾何意義:切點處的導(dǎo)數(shù)值是切線的斜率;注意“在點處的切線”與“過點的切線”的區(qū)別.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=1,且
a
b
方向相同,則
a
b
的值是(  )
A、3B、-3C、0D、-3或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
x
2
-
3
sinx.
(I)求 x∈[
2
3
π,
5
4
π]時函數(shù)f(x)的單調(diào)區(qū)間和值域;
(II)若α為第二象限角,且f(α-
π
3
)=
1
3
,求
cos2α
1+cos2α-sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩箱都裝有某種產(chǎn)品,甲箱的產(chǎn)品中有5件正品3件次品,乙箱的產(chǎn)品中有4件正品3件次品.
(Ⅰ)從甲、乙兩箱產(chǎn)品中分別取兩件產(chǎn)品,取出的產(chǎn)品中恰有兩件次品,求共有幾種取法?
(Ⅱ)從甲箱中任取2件產(chǎn)品,求這2件產(chǎn)品都是次品的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log14(14×
14
7
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ(θ為常數(shù))且f(x)的最小值為-6.
(Ⅰ)求
cos2θ
cos(θ+
π
4
)
的值;
(Ⅱ)設(shè)g(x)=λf(ωx)-f(ωx+
π
2
),λ>0,ω>0,且g(x)的圖象關(guān)于直線x=
π
6
對稱和點(
3
,3-3λ)對稱,若g(x)在[0,
π
24
]上單調(diào)遞增,求λ和ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+b
(Ⅰ)若a是從0,1,2三個數(shù)中任取的一個數(shù),b是從0,1,2,3四個數(shù)中任取的一個數(shù),求f(x)為偶函數(shù)的概率;
(Ⅱ)若a=1,b是從區(qū)間[0,3]任取的一個數(shù),求方程f(x)=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點處的切線方程是y=5x-10.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)+
1
3
mx,若g(x)的極值存在,求實數(shù)m的取值范圍以及當(dāng)x取何值時函數(shù)g(x)分別取得極大和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n個正整數(shù)的和是1000,求這些正整數(shù)的乘積的最大值.

查看答案和解析>>

同步練習(xí)冊答案