已知動點P與雙曲線x2-y2=1的兩個焦點F1,F(xiàn)2的距離之和為數(shù)學公式定值,
(1)求動點P的軌跡方程;
(2)設(shè)M(0,-1),若斜率為k(k≠0)的直線l與P點的軌跡交于不同的兩點A、B,若要使|MA|=|MB|,試求k的取值范圍.

解:(1)∵x2-y2=1,
∴c=
∵動點P與雙曲線x2-y2=1的兩個焦點F1,F(xiàn)2的距離之和為
∴|PF1|+|PF2|=
∵|F1F2|=2,|PF1|+|PF2|>|F1F2|
∴動點P是以F1,F(xiàn)2為焦點的橢圓,且a=,b=1
∴P點的軌跡方程為+y2=1.
(2)設(shè)l:y=kx+m(k≠0),則
將②代入①得:(1+3k2)x2+6kmx+3(m2-1)=0 (*)
設(shè)A(x1,y1),B(x2,y2),則AB中點Q(x0,y0)的坐標滿足:
x0=
即Q
∵|MA|=|MB|,∴M在AB的中垂線上,
∴k•=-1,
∴m=…③
又由于(*)式有兩個實數(shù)根,知△>0,
即 (6km)2-4(1+3k2)[3(m2-1)]=12(1+3k2-m2)>0 ④,
將③代入④得12[1+3k2-(2]>0,
解得-1<k<1,由k≠0,
∴k的取值范圍是k∈(-1,0)∪(0,1).
分析:(1)根據(jù)動點P與雙曲線x2-y2=1的兩個焦點F1,F(xiàn)2的距離之和為定值,可得動點P是以F1,F(xiàn)2為焦點的橢圓,從而可求動點P的軌跡方程;
(2)設(shè)出直線方程,將直線方程代入橢圓方程,利用|MA|=|MB|,及方程有兩個實數(shù)根,即可求得k的取值范圍.
點評:本題以雙曲線為載體,考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查參數(shù)范圍的求解,解題的關(guān)鍵是直線與橢圓聯(lián)立,利用韋達定理求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知動點P的軌跡方程為:
x2
4
-
y2
5
=1(x>2),O是坐標原點.
①若直線x-my-3=0截動點P的軌跡所得弦長為5,求實數(shù)m的值;
②設(shè)過P的軌跡上的點P的直線與該雙曲線的兩漸近線分別交于點P1、P2,且點P分有向線段
P1P2
所成的比為λ(λ>0),當λ∈[
3
4
,
3
2
]時,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修1-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標版高二(A選修2-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修2-1) 題型:044

已知雙曲線C以y=0為漸近線,且過點A(3,2).

(1)求雙曲線C的標準方程;

(2)已知動點P與雙曲線C的兩個焦點所連線段長的和為6,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴.已知a=1,b=2,p=2,求點Q的坐標。

⑵.已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上。

⑶.已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標系xOy中的點,l是經(jīng)過原點與點(1,b)的直線,記Q是直線l與拋物線x2=2pyp≠0)的異于原點的交點

⑴已知a=1,b=2,p=2,求點Q的坐標.

⑵已知點P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點Q落在雙曲線4x2-4y2=1上.

⑶已知動點P(a,b)滿足ab≠0,p=,若點Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點P的軌跡落在哪種二次曲線上,并說明理由.

查看答案和解析>>

同步練習冊答案