【題目】為認(rèn)真貫徹落實黨中央國務(wù)院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺了相關(guān)文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區(qū)的房價均值數(shù)據(jù):
(月份) | 2 | 3 | 4 | 5 | 6 |
(房價均價:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、具有線性相關(guān)關(guān)系,求房價均價(千元/平方米)關(guān)于月份的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測該市某城區(qū)7月份的房價.
(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,直線經(jīng)過點,直線經(jīng)過點,直線直線,且直線分別與橢圓相交于兩點和兩點.
(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;
(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,過坐標(biāo)原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當(dāng)取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】臨近開學(xué)季,某大學(xué)城附近的一款“網(wǎng)紅”書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關(guān)系如下表所示:
時間(/天) | 1 | 4 | 7 | 11 | 28 | … |
日銷售量(/個) | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內(nèi),前15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)).
(1)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(個)與(天)的關(guān)系式;
(2)試預(yù)測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;
(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com