【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元)。

(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

【答案】(1)43.5(2)當(dāng)甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元

【解析】試題分析:(1)把代入可得總收益

(2)設(shè)甲城市投資萬元,則乙城市投資萬元,可得總收益為,由得到滿足題意的x的范圍,通過二配方得到關(guān)于函數(shù),可得最值

試題解析:(1)當(dāng)時,此時甲城市投資50萬元,乙城市投資70萬元

所以總收益 =43.5(萬元)

(2)由題知,甲城市投資萬元,乙城市投資萬元

所以

依題意得,解得

,則

所以

當(dāng),即萬元時, 的最大值為44萬元

所以當(dāng)甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元

點晴:解決函數(shù)模型應(yīng)用的解答題,要注意以下幾點:①讀懂實際背景,將實際問題轉(zhuǎn)化為函數(shù)模型.②對題目中自變量的范圍要求準確.③在求解的過程中結(jié)合定義域求出函數(shù)的最值.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是橢圓 的左、右焦點,點是橢圓上一點,且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點,若,其中為坐標原點,判斷到直線的距離是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14)

如圖的幾何體中, 平面, 平面,為等邊三角形的中點.

1)求證: 平面;

2)求證:平面平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測試成績抽樣統(tǒng)計如下表:

若抽取學(xué)生人,成績分為(優(yōu)秀),(良好),(及格)三個等次,設(shè)分別表示數(shù)學(xué)成績與地理成績,例如:表中地理成績?yōu)?/span>等級的共有(人),數(shù)學(xué)成績?yōu)?/span>等級且地理成績?yōu)?/span>等級的共有8人.已知均為等級的概率是.

(1)設(shè)在該樣本中,數(shù)學(xué)成績的優(yōu)秀率是,求的值;

(2)已知,,求數(shù)學(xué)成績?yōu)?/span>等級的人數(shù)比等級的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長為4,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在函數(shù)為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個“線性覆蓋函數(shù)”.給出如下四個結(jié)論:

①函數(shù)存在“線性覆蓋函數(shù)”;

②對于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個;

為函數(shù)的一個“線性覆蓋函數(shù)”;

④若為函數(shù)的一個“線性覆蓋函數(shù)”,則

其中所有正確結(jié)論的序號是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos 2A3cos(BC)1.

(1)求角A的大;

(2)△ABC的面積S5b5,求sin Bsin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,且在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若,求證:在區(qū)間上有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的圖象在點處的切線方程;

(2)當(dāng)時,求證:;

(3)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案