已知是定義在上的奇函數(shù),且當時,
(Ⅰ)求的解析式;
(Ⅱ)直接寫出的單調區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式解集.
(Ⅰ) ;(Ⅱ)遞增區(qū)間:,;
(Ⅲ):

試題分析:(Ⅰ)當時,;
時,則,,則
綜上:         7分
(Ⅱ)遞增區(qū)間:,       10分
(Ⅲ)當時,,即
時,,即
時,,恒成立
綜上,所求解集為:       15分
點評:典型題,高一階段,此類題目較為典型,利用分段函數(shù)的奇偶性,確定函數(shù)的解析式。解涉及分段函數(shù)不等式求解問題,必須注意分段討論。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

 若
使得成立,則實數(shù)的取值范圍是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)+1(a>0,a≠1)的圖象必經(jīng)過定點 (  。
A.(0,1)B.(2,1)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y = 1n|x-1|的圖像與函數(shù)y="-2" cos x(-2≤x≤4)的圖像所有交點的橫坐標之和等于
A.8B.6 C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
(本小題滿分12分)某地方政府準備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數(shù)關系式(寫出函數(shù)定義域);
(2)怎樣設計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)
今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).

(Ⅰ)求水箱容積的表達式,并指出函數(shù)的定義域;
(Ⅱ)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)通常情況下,同一地區(qū)一天的溫度隨時間變化的曲線接近于函數(shù)的圖像.2013年1月下旬荊門地區(qū)連續(xù)幾天最高溫度都出現(xiàn)在14時,最高溫度為;最低溫度出現(xiàn)在凌晨2時,最低溫度為零下.
(Ⅰ)請推理荊門地區(qū)該時段的溫度函數(shù)
的表達式;
(Ⅱ)29日上午9時某高中將舉行期末考試,如果溫度低于,教室就要開空調,請問屆時學校后勤應該送電嗎?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對實數(shù),定義運算“”: 設函數(shù),,若函數(shù)的圖像與軸恰有兩個公共點,則實數(shù)的取值范圍是(  )                                                                           
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

奇函數(shù)在區(qū)間上是減函數(shù),則在區(qū)間上是
A.增函數(shù),且最大值為B.減函數(shù),且最大值為
C.增函數(shù),且最大值為D.減函數(shù),且最大值為

查看答案和解析>>

同步練習冊答案