已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(3)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[l,e]上的最小值.(其中e為自然對數(shù)的底數(shù))
分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)性區(qū)間.
(2)求函數(shù)的導(dǎo)數(shù),利用切點處的導(dǎo)數(shù)和切線斜率相等,求出a的值.
(3)利用導(dǎo)數(shù)求函數(shù)g(x)在閉區(qū)間上的最小值.
解答:解:(1)f′(x)=
a(2-x)
x3
,(x≠0)
,因為a>0,所以由f'(x)>0,得0<x<2,此時函數(shù)單調(diào)遞增.
由f'(x)<0,得x>2或x<0,此時函數(shù)單調(diào)遞減.
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞減區(qū)間為(0,2).
(2)設(shè)切點坐標(biāo)為(x0,y0,則
y0=
a(x0-1)
x0
x0-y0-1=0
a(2-x0)
x03
=1
,解得x0=1,a=1.
(3)g(x)=xlnx-x2f(x)=xlnx-a(x-1),
則g'(x)=lnx+1-a,由g'(x)=lnx+1-a=0,解得x=ea-1
所以在區(qū)間(0,ea-1)上,函數(shù)單調(diào)遞減,在(ea-1.,+∞)上,函數(shù)單調(diào)遞增.
①當(dāng)ea-1.≤1,即0<a≤1時,在區(qū)間[l,e]上g(x)單調(diào)遞增,所以g(x)的最小值為g(1)=0.
②當(dāng)ea-1.≥e,即a≥2時,在區(qū)間[l,e]上g(x)單調(diào)遞減,所以g(x)的最小值為g(e)=e+a-ae.
③當(dāng)1<ea-1.<e,即1<a<2時,g(x)的最小值為g(ea-1.)=(a-1)ea-1.-a(ea-1.-1)=a-ea-1..
綜上當(dāng)0<a≤1時,g(x)的最小值為g(1)=0.
當(dāng)1<a<2時,g(x)的最小值為g(ea-1.),
當(dāng)≥2時,g(x)的最小值為g(e)=e+a-ae.
點評:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值和函數(shù)的單調(diào)區(qū)間,比較綜合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案