成等差數(shù)列,而都分別成等比數(shù)列,則的值為(    )

A.16   B.15   C.14    D.12

 

【答案】

D

【解析】主要考查等比數(shù)列的概念、通項公式。

解:因為成等差數(shù)列,而都分別成等比數(shù)列,所以,消去可得=12,故選D。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64個正數(shù)排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且a11=
1
2
,a24=1,a32=
1
4

(1)若a21=
1
4
,求a12和a13的值.
(2)記第n行各項之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足an=
36
An
,聯(lián)mbn+1=2(an+mbn)(m為非零常數(shù)),cn=
bn
an
,且c12+c72=100,求c1+c2+…c7的取值范圍.
(3)對(2)中的an,記dn=
200
an
(n∈N)
,設(shè)Bn=d1•d2…dn(n∈N),求數(shù)列{Bn}中最大項的項數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

a,b,c成等差數(shù)列,而a+1,b,ca,bc+2都分別成等比數(shù)列,則b的值為   

[  ]

A16   B15   C14   D12

查看答案和解析>>

科目:高中數(shù)學 來源:高中數(shù)學全解題庫(國標蘇教版·必修4、必修5) 蘇教版 題型:044

如圖,64個正數(shù)排成8行8列,在符號aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等),且,a24=1,

(1)若,求a12和a13的值

(2)求{aij}的通項公式.(用ij表示)

(3)記第n行各項之和為An(1≤n≤8).數(shù)列{an},{bn},{cn}滿足,mbn+1=2(an+mbn)(m為非零常數(shù)),,且,求c1+c2+c3+…+c7的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010年上海市華東師大二附中高三數(shù)學綜合練習試卷(04)(解析版) 題型:解答題

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64個正數(shù)排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且,a24=1,
(1)若,求a12和a13的值.
(2)記第n行各項之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足,聯(lián)mbn+1=2(an+mbn)(m為非零常數(shù)),,且c12+c72=100,求c1+c2+…c7的取值范圍.
(3)對(2)中的an,記,設(shè)Bn=d1•d2…dn(n∈N),求數(shù)列{Bn}中最大項的項數(shù).

查看答案和解析>>

同步練習冊答案