已知實(shí)數(shù)x,y滿足y=
3-x2+2x
,求z=
y+3
x-1
的取值范圍.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:作出函數(shù)y的圖象,利用z的幾何意義,利用直線和圓的位置關(guān)系,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:由y=
3-x2+2x
得y2=3-x2+2x,
即(x-1)2+y2=4,(y≥0),則函數(shù)對(duì)應(yīng)的曲線為圓心為(1,0),半徑為2的上半圓,
由z=
y+3
x-1
則z的幾何意義,為圓上的點(diǎn)到定點(diǎn)C(1,-3)的斜率,
由圖象可知A(-1,0),B(3,0),
則AC的斜率k=
3
-2
=-
3
2
,
BC的斜率k=
3
3-1
=
3
2
,
∴z滿足z
3
2
或z≤-
3
2
..
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系的應(yīng)用以及直線斜率的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若α、β、γ均為銳角,且sinα+sinγ=sinβ,cosα-cosγ=cosβ,則α-β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1)、B(x2,y2)、C(x3,y3)是拋物線x2=2py(p>0﹚上的三點(diǎn),F(xiàn)是其焦點(diǎn),且x12、x22、x32成等差數(shù)列.求證:|AF|、|BF|、|CF|也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
2
,π),tanα-cotα=
3
2
,
(1)求tanα,sinα的值;
(2)求tan
α
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某品牌電視機(jī)代理銷售商根據(jù)近年銷售和利潤情況得出某種型號(hào)電視機(jī)的利潤情況有如下規(guī)律:每臺(tái)電視機(jī)的最終銷售利潤與其無故障使用時(shí)間T(單位:年)有關(guān).若T≤1,則每臺(tái)銷售利潤為0元;若1<T≤3,則每臺(tái)銷售利潤為100元;若T>3,則每臺(tái)銷售利潤為200元.設(shè)每臺(tái)該種電視機(jī)的無故障使用時(shí)間T≤1,1<T≤3,T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程10x2-6x+a=0的兩個(gè)根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)記ξ表示銷售兩臺(tái)這種電視機(jī)的銷售利潤總和,寫出ξ的所有結(jié)果,并求ξ的分布列;
(Ⅲ)求銷售兩臺(tái)這種型號(hào)電視機(jī)的銷售利潤總和的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高考理科總分得640就能上北京大學(xué),已知一名理科學(xué)生的語文、英語、理綜合得分分別為135分,125分,260分.?dāng)?shù)學(xué)試卷中12個(gè)選擇題每題5分,且每題答對(duì)的概率都是0.9,4個(gè)填空題每題4分且每題答對(duì)的概率都是0.8,6個(gè)大題前五個(gè)每題12分,最后一題14分,前兩個(gè)大題估計(jì)能得滿分,最后一個(gè)大題估計(jì)能得2分.已知第三、四、五個(gè)大題每題答對(duì)的概率都相等,且至少答對(duì)一題的概率為0.992.
(1)求這名理科學(xué)生數(shù)學(xué)試卷得分的期望;
(2)這名學(xué)生能否考上北京大學(xué)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率為
2
5
;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率為
7
9

(Ⅰ)若袋中共有10個(gè)球;
(1)求白球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求ξ的數(shù)學(xué)期望E(ξ).
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,若S17為一確定常數(shù),則當(dāng)n為何值時(shí),可以使4a2-3a9+an也為確定常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx+c(ω>0,x∈R,c是實(shí)數(shù)常數(shù))的圖象上的一個(gè)最高點(diǎn)(
π
6
,1),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是(
3
,-3).
(1)求函數(shù)f(x)的解析式及其單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
AB
BC
=-
1
2
ac,角A的取值范圍是區(qū)間M,當(dāng)x∈M時(shí),試求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案