【題目】如圖所示,正三棱柱的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是,是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在一點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
【答案】(I)見解析;(II)存在點(diǎn),使得平面平面,且
【解析】
(I)連接AB1交A1B于點(diǎn)M,連接MD.利用中位線定理得出B1C∥MD,故而B1C∥平面A1BD;
(II)作CO⊥AB于點(diǎn)O,以O為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,設(shè)AE=a,分別求出平面B1C1E和平面A1BD的法向量,令兩法向量垂直解出a.
(I)連接交于點(diǎn),連接.
∵三棱柱是正三棱柱,∴四邊形是矩形,
∴為的中點(diǎn).
∵是的中點(diǎn),∴.
又平面,平面,
∴平面.
(II)作于點(diǎn),則平面,
以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖,假設(shè)存在點(diǎn),設(shè).
∵是的中點(diǎn),∴.
∴.
設(shè)是平面的法向量為,∴,
∴,令,得.
∵,則.
設(shè)平面的法向量為,∴.
∴,令,得.
∵平面平面,∴,
即,解得.
∴存在點(diǎn),使得平面平面,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量=(-2,1),=(x,y).
(1)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;
(2)若x,y在區(qū)間[1,6]內(nèi)取值,求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)是奇函數(shù),且滿足, ,數(shù)列滿足且(),則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?/span>50-70分的頻率是多少
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績(jī)?cè)?/span>80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近13年的宣傳費(fèi)和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
由散點(diǎn)圖知,按建立關(guān)于的回歸方程是合理的.令,則,經(jīng)計(jì)算得如下數(shù)據(jù):
| |||||
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根據(jù)以上信息,建立關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為.根據(jù)(1)的結(jié)果,求當(dāng)年宣傳費(fèi)時(shí),年利潤(rùn)的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(Ⅰ)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(Ⅱ)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時(shí),求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(1)已知函數(shù)具有性質(zhì),求出對(duì)應(yīng)的的值;
(2)證明:函數(shù)一定不具有性質(zhì);
(3)下列三個(gè)函數(shù):,,,哪些恒具有性質(zhì),并說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,四邊形是矩形,平面 平面,點(diǎn)、分別為、中點(diǎn).
(1)求證: 平面;
(2)若,求平面DEF與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com