20、設(shè)a,b,c為△ABC的三條邊,求證(a+b+c)2<4(ab+bc+ca)
分析:首先要證明(a+b+c)2<4(ab+bc+ca),可以做差然后化簡得a2+b2+c2-a(b+c)-b(c+a)-c(a+b).然后根據(jù)已知條件a,b,c為△ABC的三條邊,兩邊之和大于第三邊,可證明a2+b2+c2-a(b+c)-b(c+a)-c(a+b)<0.即得到結(jié)果.
解答:證明:要證原不等式成立,只需證4(ab+bc+ca)-(a+b+c)2>0
即a2+b2+c2-2(ab+bc+ca)<0,
即a2+b2+c2-a(b+c)-b(c+a)-c(a+b)<0,
也即a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立.
因為a,b,c為△ABC的三條邊,
∴a-(b+c)<0,b-(c+a)<0,c-(a+b)<0
即從而a[a-(b+c)]+b[b-(c+a)]+c[c-(a+b)]<0成立,所以原不等式也成立.
點評:此題主要考查基本不等式的證明問題,其中涉及到三角形的性質(zhì)兩邊之和大于第三邊,屬于中檔題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
6
)
+sin2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若AB=1,sinB=
1
3
,f(
C
2
)=
3
2
,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
-
1
2
cos2x+1

(1)求函數(shù)f(x)的最小正周期及最大值;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若AB=1,sinB=
1
3
f(
2C
3
)=
7
4
,且C為銳角,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點A(-2,0),B(6,8),C(8,6),則D點的坐標(biāo)為(0,-1);④設(shè)
a
,
b
,
c
為同一平面內(nèi)具有相同起點的任意三個非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如果a,b都是正數(shù),且a≠b,求證a6+b6>a4b2+a2b4
(2)設(shè)a,b,c為△ABC的三條邊,求證(a+b+c)2<4(ab+bc+ca)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC交于點D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
,
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點,求線段AB的長.
D.選修4-5 不等式證明選講設(shè)a,b,c為正實數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

同步練習(xí)冊答案