已知函數(shù)f(x)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f(-數(shù)學(xué)公式),b=f(2),c=f(3),則a、b、c的大小關(guān)系為


  1. A.
    c>a>b
  2. B.
    c>b>a
  3. C.
    a>c>b
  4. D.
    b>a>c
D
分析:根據(jù)函數(shù)f(x)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,可得函數(shù)f(x)關(guān)于x=1對(duì)稱;由當(dāng)x2>x1>1時(shí),[f (x2)-f (x1)]( x2-x1)<0恒成立,可得函數(shù)f(x)在(1,+∞)上為單調(diào)減函數(shù),利用單調(diào)性即可判定出a、b、c的大。
解答:∵函數(shù)f(x)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,
∴函數(shù)f(x)關(guān)于x=1對(duì)稱
∴a=f(-)=f(),
∵當(dāng)x2>x1>1時(shí),[f (x2)-f (x1)]( x2-x1)<0恒成立
∴f (x2)-f (x1)<0,即f (x2)<f (x1
∴函數(shù)f(x)在(1,+∞)上為單調(diào)減函數(shù)
∵1<2<<3
∴f(2)>f()>f(3)即b>a>c
故選D.
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性應(yīng)用,以及函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象有且僅有由五個(gè)點(diǎn)構(gòu)成,它們分別為(1,2),(2,3),(3,3),(4,2),(5,2),則f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天門模擬)已知函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,λ),且對(duì)任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足a1=λ-2,2an+1=
2n,n為奇數(shù)
f(an),n為偶數(shù)

(I)求f(n)(n∈N*)的表達(dá)式;
(II)設(shè)λ=3,求a1+a2+a3+…+a2n;
(III)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x<0時(shí),f(x)=2x-4,那么當(dāng)x>0時(shí),f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•焦作一模)已知函數(shù)f(x)的圖象過(guò)點(diǎn)(
π
4
,-
1
2
),它的導(dǎo)函數(shù)f′(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<
π
2
,為了得到函
數(shù)f(x)的圖象,只要將函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4,則下列表示大小關(guān)系的式子正確的是( 。
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案