選修4-1:幾何證明選講
如圖,E是圓O中直徑CF延長線上一點,弦AB⊥CF,AE交圓O于P,PB交CF于D,連接AO、AD.求證:
(Ⅰ)∠E=∠OAD;
(Ⅱ)OF2=OD•OE.
考點:與圓有關(guān)的比例線段
專題:直線與圓
分析:(Ⅰ)由已知條件,結(jié)合圖形知∠E=∠APD-∠PDE,∠OAD=∠APD-∠ADC,再由垂徑定理能證明∠E=∠OAD.
(Ⅱ)由已知條件推導(dǎo)出△AOD∽△EOA,由此能夠證明OF2=OD•OE.
解答: (本小題滿分10分)
證明:(Ⅰ)∵E是圓O中直徑CF延長線上一點,弦AB⊥CF,
∴∠CDB=∠ADC,∠AOC=∠APD,
∵∠E=∠APD-∠PDE,
∠OAD=∠AOC-∠ADC=∠APD-∠ADC,
∠PDE=∠CDB=∠ADC,
∴∠E=∠OAD.
(Ⅱ)∵∠E=∠OAD,∠AOD=∠EOA,
∴△AOD∽△EOA,
OA
OE
=
OD
OA
,即OA2=OD•OE,
又∵OA=OF,∴OF2=OD•OE.
點評:本題考查角相等的證明,考查等式成立的證明,解題時要注意垂徑定理、相似三角形等知識點的合理運(yùn)用,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若16-x2≥0,則( 。
A、0≤x≤4
B、-4≤x≤0
C、-4≤x≤4
D、x≤-4或x≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某班50名學(xué)生中抽取6名學(xué)生進(jìn)行視力狀況的統(tǒng)計分析,下列說法正確的是(  )
A、50名學(xué)生是總體
B、每個被調(diào)查的學(xué)生是個體
C、抽取的6名學(xué)生的視力是一個樣本
D、抽取的6名學(xué)生的視力是樣本容量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若c(1+cosA)=
3
a•sinC

(1)求角A的大;
(2)若a=2,△ABC的面積為
3
,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=2013的左、右頂點分別為M、N,點P是雙曲線上異于M、N的任意一點.
(1)記直線PM、PN的斜率分別為kPM、kPN,求證:kPM•kPN為定值;
(2)若點P是雙曲線上位于第一象限的點,且∠PNM=7∠PMN,求∠MPN.
(3)類比到橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,M、N為其左、右頂點,點P是橢圓上異于M、N的任意一點.kPM•kPN還是定值嗎?如果是,請求出這個值,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
5
5
,且橢圓C短軸端點到左焦點的距離為
5

(1)求橢圓C的方程;
(2)過橢圓C的左焦點F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點Q在x軸上并使得QF為∠AQB的平分線,求點Q的坐標(biāo);
(3)在滿足(2)的條件下,記△AQF與△BQF的面積之比為λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
sinC
sinBcosA
=
2c
b

(1)求A的大;
(2)若b=4,△ABC的面積S=2
3
,求邊長a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1>0,a1006=2,則log2a1+log2a2+log2a3+…+log2a2011=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:不等式|x-1|-|x-3|>a有解,則a的范圍是
 

查看答案和解析>>

同步練習(xí)冊答案