己知等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(Ⅱ)若,,問數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說明理由.
【答案】分析:(Ⅰ)本題先根據(jù)等比數(shù)列的通項(xiàng)公式得a2=a1q,a3=a1q2;進(jìn)而由前n項(xiàng)和的意義可表示出S1=a1,S2=a1+a1q,S3=a1+a1q+,再利用等差數(shù)列的意義可得2S3=S1+S2,于是 2(a1+a1q+)=a1+(a1+a1q),由此方程不難求出公比q=;
(Ⅱ)由等比數(shù)列的通項(xiàng)公式=,于是==,進(jìn)而可求出==,再根據(jù)指數(shù)函數(shù)的單調(diào)性求出其最大值.
解答:解:(Ⅰ)∵,∴a2=a1q,
∴S1=a1,S2=a1+a1q,
又∵S1,S3,S2成等差數(shù)列,
∴2S3=S1+S2,∴2(a1+a1q+)=a1+(a1+a1q),
∵a1≠0,∴2(1+q+q2)=2+q,∴2q2+q=0,
又∵q≠0,∴
(Ⅱ)∵,q=,
=
==,
==
∵2n+1-2≥2,
∴Tn≤T1=
所以數(shù)列{Tn}的最大值為
點(diǎn)評(píng):本題要求學(xué)生熟練掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,并進(jìn)行有關(guān)計(jì)算.同時(shí)會(huì)根據(jù)指數(shù)函數(shù)類型的單調(diào)性求最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知等比數(shù)列{an}的各項(xiàng)都是正數(shù),a1=2,前3項(xiàng)和為14.
(1)求{an}的通項(xiàng)公式
(2)設(shè)bn=log2an,求數(shù)列{bn}的前20項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)己知等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(Ⅱ)若a1=-
12
,Tn=a2a4a2n
,,問數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:宜春市2007屆高三年級(jí)第一次模擬考試 題型:013

己知等比數(shù)列{an}的首項(xiàng)a1=64,公比,設(shè)表示這個(gè)數(shù)列的前項(xiàng)積,則當(dāng)取得最大值時(shí),n=

[  ]

A.5

B.6

C.6或7

D.5或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(Ⅱ)若數(shù)學(xué)公式,,問數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案