如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC=
3:2
3:2
分析:利用直角三角形相似,可得AC2=AD•AB,BC2=BD•AB,相除,即可得到結(jié)論.
解答:解:∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴△ACD∽△ABC,△BCD∽△BAC,
∴AC2=AD•AB,BC2=BD•AB
AC2
BC2
=
AD•AB
BD•AB
=
AD
BD

∵AD:BD=9:4,
∴AC:BC=3:2
故答案為:3:2
點(diǎn)評(píng):本題考查三角形的相似,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

22、如圖所示,在Rt△ABCD中,∠ACB=90°,點(diǎn)O為三角形外的一點(diǎn),以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點(diǎn)為E,圓O與邊BC相交于D點(diǎn),直徑EF與邊BC交于G點(diǎn),連接AC.
(1)求證:A、E、G、C四點(diǎn)共圓;
(2)求證:AG∥ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時(shí),求
f(θ)g(θ)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.一曲線E過點(diǎn)C,動(dòng)點(diǎn)P在曲線E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變,直線l經(jīng)過A與曲線E交于M,N兩點(diǎn).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線E的方程;
(2)設(shè)直線l的斜率為k,若∠MBN為鈍角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時(shí),求
f(θ)
g(θ)
的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年東北三校高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,在Rt△ABCD中,∠ACB=90°,點(diǎn)O為三角形外的一點(diǎn),以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點(diǎn)為E,圓O與邊BC相交于D點(diǎn),直徑EF與邊BC交于G點(diǎn),連接AC.
(1)求證:A、E、G、C四點(diǎn)共圓;
(2)求證:AG∥ED.

查看答案和解析>>

同步練習(xí)冊(cè)答案