已知直線(xiàn)l:
x=2+t
y=1-at
(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).
(1)若A,B的中點(diǎn)為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線(xiàn)l的直角坐標(biāo)方程.
分析:(1)設(shè)出直線(xiàn)方程代入橢圓方程,利用韋達(dá)定理及弦AB的中點(diǎn)坐標(biāo)為P(2,1),求出斜率,即可求得直線(xiàn)AB的方程.
(2)根據(jù)P(2,1)是弦AB的一個(gè)三等分點(diǎn),得到|AP|=
1
2
|PB|,從而得出
1+a2
|t1|=2
1+a2
|t2|,⇒t1=-2t2,再利用(1)中得到的方程結(jié)合韋達(dá)定理解得a的值,從而得出直線(xiàn)l的直角坐標(biāo)方程.
解答:解:(1)直線(xiàn)l:
x=2+t
y=1-at
代入橢圓方程,
整理得(4a2+1)t2-4(2a-1)t-8=0
設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=
4(2a-1)
4a2+1
,t1t2=
-8
4a2+1

∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0
解之得a=
1
2
,∴t1t2=-4,∵|AP|=
12+(-
1
2
)2
|t1|
=
5
2
|t1|,|BP|=
5
2
|t2|,
∴|AB|=
5
2
(|t1|+|t1|)=
5
2
×
(t1+t2)2-4t1t2
=2
5
,
(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=
1
2
|PB|,
1+a2
|t1|=2
1+a2
|t2|,⇒t1=-2t2,
∴t1+t2=-t2=
4(2a-1)
4a2+1
,t1t2=-2t
 
2
2
=
-8
4a2+1

∴t
 
2
2
=
4
4a2+1
,∴
16(2a-1)2
(4a2+1)2
=
4
4a2+1
,解得a=
7
6
,
∴直線(xiàn)l的直角坐標(biāo)方程y-1=
7
6
(x-2).
點(diǎn)評(píng):本題考查直線(xiàn)與橢圓的綜合,考查弦中點(diǎn)問(wèn)題,解題的關(guān)鍵是直線(xiàn)方程代入橢圓方程,利用韋達(dá)定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:x=-2,l與x軸交于點(diǎn)A,動(dòng)點(diǎn)M(x,y)到直線(xiàn)l的距離比到點(diǎn)F(1,0)的距離大1.
(Ⅰ)求點(diǎn)M的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)A作直線(xiàn)交曲線(xiàn)E于B,C兩點(diǎn),若
AB
=2
BC
,求此直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓D:x2+
y2
b2
=1(0<b<1)
的左焦點(diǎn)為F,其左右頂點(diǎn)為A、C,橢圓與y軸正半軸的交點(diǎn)為B,△FBC的外接圓的圓心P(m,n)在直線(xiàn)x+y=0上.
(Ⅰ)求橢圓D的方程;
(Ⅱ)已知直線(xiàn)l:x=-
2
,N是橢圓D上的動(dòng)點(diǎn),NM⊥l,垂足為M,是否存在點(diǎn)N,使得△FMN為等腰三角形?若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:
x=2+t
y=-2-t
(t為參數(shù))與圓C:
x=2cosθ+1
y=2sinθ
(θ為參數(shù)),則直線(xiàn)l的傾斜角及圓心C的直角坐標(biāo)分別是( 。
A、
π
4
,(1,0)
B、
π
4
,(-1,0)
C、
4
,(1,0)
D、
4
,(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南大理賓川四中高二1月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知直線(xiàn)l:  y=x-2 與拋物線(xiàn)y2=2x相交于兩點(diǎn)A、B,

(1)求證:OA⊥OB

(2)求線(xiàn)段AB的長(zhǎng)度

 

查看答案和解析>>

同步練習(xí)冊(cè)答案