解:(Ⅰ)當(dāng)k=0時,f(x)=e
2x-1-2x,
f
′(x)=2e
2x-2,
令f
′(x)>0,則2e
2x-2>0,解得:x>0.
令f
′(x)<0,則2e
2x-2<0,解得:x<0.
所以,函數(shù)f(x)=e
2x-1-2x的單調(diào)增區(qū)間為(0,+∞).
單調(diào)減區(qū)間為(-∞,0).
(Ⅱ)由函數(shù)f(x)=e
2x-1-2x-kx
2,
則f
′(x)=2e
2x-2kx-2=2(e
2x-kx-1),
令g(x)=e
2x-kx-1,
則g
′(x)=2e
2x-k.
由x≥0,
所以,①當(dāng)k≤2時,g
′(x)≥0,g(x)為增函數(shù),而g(0)=0,
所以g(x)≥0,即f
′(x)≥0,所以f(x)在[0,+∞)上為增函數(shù),
而f(0)=0,所以f(x)≥0在[0,+∞)上恒成立.
②當(dāng)k>2時,令g
′(x)<0,即2e
2x-k<0,則0≤x<
.
即g(x)在[0,
)上為減函數(shù),而g(0)=0,所以,g(x)在[0,
)上小于0.
即f
′(x)<0,所以,f(x)在[0,
)上為減函數(shù),而f(0)=0,故此時f(x)<0,不合題意.
綜上,k≤2.
(Ⅲ)
.
事實上,由(Ⅱ)知,f(x)=e
2x-1-2x-2x
2在[0,+∞)上為增函數(shù),
所以,e
2x≥2x
2+2x+1=x
2+(x+1)
2,
則e
0≥1
2e
2≥1
2+2
2e
4≥2
2+3
2e
6≥3
2+4
2…
e
2(n-1)≥(n-1)
2+n
2累加得:1+e
2+e
4+e
6+…+e
2(n-1)≥2(1
2+2
2+3
2+…+(n-1)
2)+n
2.
即
.
所以,
.
分析:(Ⅰ)取x=0后,求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)大于0和導(dǎo)函數(shù)小于0分別求出函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求出原函數(shù)的導(dǎo)函數(shù),以k≤2和k>2進(jìn)行分類討論,由k≤2時,說明原函數(shù)在[0,+∞)上為增函數(shù),說明f(x)≥0在[0,+∞)上恒成立,k>2時,說明這種情況不存在;
(Ⅲ)結(jié)合(Ⅱ),說明函數(shù)f(x)當(dāng)k=2時為增函數(shù),把不等式變形e
2x≥2x
2+2x+1=x
2+(x+1)
2后,依次取x的值為0,1,2…,(n-1),累加后利用等比數(shù)列求和公式可得結(jié)論.
點評:本題考查了利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)中的恒成立問題,考查了不等式的證明,解答此題的關(guān)鍵是運用導(dǎo)函數(shù)分析函數(shù)的單調(diào)性,同時考查了學(xué)生靈活的變式思維能力,此題屬難題.