10.若復(fù)數(shù)z=$\frac{1+mi}{1+i}$(i是虛數(shù)單位)是實(shí)數(shù),則實(shí)數(shù)m=( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,再由已知條件得虛部等于0,求解即可得答案.

解答 解:z=$\frac{1+mi}{1+i}$=$\frac{(1+mi)(1-i)}{(1+i)(1-i)}=\frac{(m+1)+(m-1)i}{2}$=$\frac{m+1}{2}+\frac{m-1}{2}i$,
∵復(fù)數(shù)z=$\frac{1+mi}{1+i}$(i是虛數(shù)單位)是實(shí)數(shù),
∴$\frac{m-1}{2}=0$,即m=1.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知圓C的方程為(x-3)2+y2=1,圓M的方程為(x-3-3cosθ)2+(y-3sinθ)2=1(θ∈R),過(guò)M上任意一點(diǎn)P作圓C的兩條切線(xiàn)PA,PB,切點(diǎn)分別為A、B,則∠APB的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知隨機(jī)變量X的分布列如下:
 X 1 2
 P $\frac{49}{84}$ a $\frac{9}{84}$ $\frac{1}{84}$
則a=$\frac{25}{84}$,數(shù)學(xué)期望E(X)=$\frac{65}{42}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法錯(cuò)誤的是(  )
A.命題“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”
B.命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆命題為真命題
C.命題“若a>b,則ac2>bc2”的否命題為真命題
D.若命題“¬p∨q”為假命題,則“p∧¬q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.方程$\frac{x|x|}{81}+\frac{y|y|}{49}=λ(λ<0)$的曲線(xiàn)即為y=f(x)的圖象,對(duì)于函數(shù)y=f(x),下列命題中正確的是②③⑤.(請(qǐng)寫(xiě)出所有正確命題的序號(hào))
①函數(shù)y=f(x)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng);
②函數(shù)y=f(x)在R上是單調(diào)遞減函數(shù);
③函數(shù)y=f(x)的圖象不經(jīng)過(guò)第一象限;
④函數(shù)F(x)=9f(x)+7x至少存在一個(gè)零點(diǎn);
⑤函數(shù)y=f(x)的值域是R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5=x5,則a2=(  )
A.$\frac{5}{4}$B.$\frac{5}{8}$C.$\frac{5}{16}$D.$\frac{5}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線(xiàn)及粗虛線(xiàn)畫(huà)出的是某多面體的三視圖,則該多面體外接球的表面積為( 。
A.B.$\frac{25}{2}$πC.$\frac{41}{4}$πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若$\frac{1}{a}$<$\frac{1}$<0,則下列結(jié)論正確的是(  )
A.|a|>|b|B.$\frac{a}$<1C.ab<b2D.ab>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知角α∈(-$\frac{π}{2}$,0),sinα=-$\frac{5}{13}$,求sin($\frac{π}{6}$+α)和cos($\frac{π}{6}$+α).

查看答案和解析>>

同步練習(xí)冊(cè)答案