給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
(1)橢圓方程,伴隨圓方程;(2);(3)存在,.
解析試題分析:(1)這是基本題,題設實質(zhì)已知,要求橢圓標準方程,已知圓心及半徑求圓的方程;(2)為了求點坐標,我們可設直線方程為,直線與橢圓只有一個公共點,即直線的方程與橢圓的方程聯(lián)立方程組,這個方程組只有一個解,消元后利用可得的一個方程,又直線截圓所得弦長為,又得一個關于的方程,聯(lián)立可解得;(3)這是解析幾何中的存在性問題,解決方法都是假設存在,然后去求出這個,能求出就說明存在,不能求出就說明不存在.解法如下,寫出過點的直線方程,求出圓心到這條直線的距離為,可見當圓半徑不小于3時,圓上的點到這條直線的最短距離為0,即當時,,但由于,無解,當圓半徑小于3時,圓上的點到這條直線的最短距離為,由此得,又有,可解得,故存在.
(1)由題意:,則,所以橢圓的方程為, 2分
其“伴隨圓”的方程為. 4分
(2)設直線的方程為
由得 6分
則有得, ① 7分
由直線截橢圓的“伴隨圓”所得弦長為,可得
,得 ② 8分
由①②得,又,故,所以點坐標為. 9分
(3)過的直線的方程為:,
即,得 11分
由于圓心到直線的距離為
, 13分
當時,,但,所以,等式不能成立;
當時,,
由得所以
因為,所以,
得.所以
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的對稱中心為原點,焦點在軸上,左右焦點分別為和,且||=2,離心率.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于A,B兩點,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點M,N滿足,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線.命題p: 直線l1:與拋物線C有公共點.命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個不同的交點A和B,且·>2(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
無論為任何實數(shù),直線與雙曲線恒有公共點.
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點,與雙曲線交于兩點,并且滿足,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標系中,分別是橢圓的左右焦點,頂點的坐標是,連接并延長交橢圓于點,過點作軸的垂線交橢圓于另一點,連接.
(1)若點的坐標為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點為,其中的離心率為.
(1)求的值;
(2)過點的直線與分別交于(均異于點),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方) ,且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com