【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點的個數(shù);
(2)當a=0時,關(guān)于x的方程f(x)=m(m∈R)有2個不同的實數(shù)根x1 , x2 , 證明:x1+x2>2.
【答案】
(1)解:解:f′(x)= ﹣1﹣ = ,x>0
方程﹣x2+x﹣a=0的判別式為△=1﹣4a,
①當a≥ 時,f′(x)≤0,f(x)在(0,+∞),為減函數(shù),無極值點,
②當0≤a< 時,令f′(x)=0,解得x1= >0,x2= ,
當f′(x)<0,解得0<x< ,x> ,
此時f(x)在(0, ),( ,+∞)為減函數(shù),
當f′(x)>0時,解得 <x< ,
此時f(x)在( , )為增函數(shù),
此時f(x)有一個極大值點x= ,和一個極小值點x= ,
③當a<0,令f′(x)=0,解得x1= <0,x2= >0,
當f′(x)>0,解得0<x< ,此時f(x)在(0, ),為增函數(shù),
當f′(x)<0時,解得x> ,此時在( ,+∞)為減函數(shù),
此時f(x)有一個極大值點x=
(2)由題意知f(x1)=m,f(x2)=m,
故f(x1)=f(x2),
∵x1≠x2,不妨設(shè)x1<x2,
∴l(xiāng)nx1﹣x1+1=lnx2﹣x2+1,
∴l(xiāng)n =x2﹣x1,
令 =t,則x2=tx1,
∴l(xiāng)nt=(t﹣1)x1,
∴x1= ,x2=tx1= ,
故要證x1+x2= lnt>2,t>1,
即證(t+1)lnt>2(t﹣1),
令g(t)=(t+1)lnt﹣2t+2,
∴g′(t)= +lnt﹣2= ,
令h(t)=tlnt﹣t+1,t>1,
則h′(t)=lnt>0,
∴h(t)在t∈(1,+∞)上為增函數(shù),
∴h(t)>h(1)=0,
∴g(t)在(1,+∞)為增函數(shù),
∴g(t)>g(1)=0,
∴(t+1)lnt>2(t﹣1),
即 lnt>2,
∴x1+x2>2
【解析】(1)先求出導函數(shù),再根據(jù)判別式和a的范圍分類討論,即可判斷函數(shù)的單調(diào)性和極值點的個數(shù),(2)問題轉(zhuǎn)化為要證x1+x2= lnt>2,t>1,即證(t+1)lnt>2(t﹣1),構(gòu)造函數(shù),根據(jù)導數(shù)和函數(shù)的單調(diào)性和最值得關(guān)系即可證明.
【考點精析】解答此題的關(guān)鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的極值與導數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題 方程 有兩個不相等的負實根,
命題 不等式 的解集為 ,
(1)若為真命題,求 的取值范圍.
(2)若 為真命題, 為假命題,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}= ,則min{h(0),h(1)}的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間 上的圖象,為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導數(shù),f″(x)是函數(shù)f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.
某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù) ,請你根據(jù)上面探究結(jié)果,計算
= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠BAD=60°,M為DC的中點,若N為菱形內(nèi)任意一點(含邊界),則 的最大值為( )
A.3
B.2
C.6
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=4,AB=4 ,∠CDA=120°,點N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com