【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.則△ABC中最大角的度數(shù)是 .
【答案】120°
【解析】解:把a(bǔ)2﹣a﹣2b﹣2c=0和a+2b﹣2c+3=0聯(lián)立可得,b= ,c= ,顯然c>b. 比較c與a的大小.
因?yàn)閎= >0,解得a>3,(a<﹣1的情況很明顯為負(fù)數(shù)舍棄了)
假設(shè)c= >a,解得 a<1或a>3,剛好符合,
所以c>a,所以最大邊為c.
由余弦定理可得 c2=a2+b2﹣2abcosC,
即 ( )2=a2+[ ]2﹣2a cosC,
解得cosC=﹣ ,
∴C=120°,
所以答案是:120°.
【考點(diǎn)精析】關(guān)于本題考查的余弦定理的定義,需要了解余弦定理:;;才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )上單調(diào),則ω的最大值為( )
A.11
B.9
C.7
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=2py(p>0),F(xiàn)為其焦點(diǎn),過點(diǎn)F的直線l交拋物線于A、B兩點(diǎn),過點(diǎn)B作x軸的垂線,交直線OA于點(diǎn)C,如圖所示.
(Ⅰ)求點(diǎn)C的軌跡M的方程;
(Ⅱ)直線m是拋物線的不與x軸重合的切線,切點(diǎn)為P,M與直線m交于點(diǎn)Q,求證:以線段PQ為直徑的圓過點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}和{bn}滿足:對(duì)任意n∈N* , an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列,且a1=1,b1=2,a2=3.
(Ⅰ)證明數(shù)列{ }是等差數(shù)列;
(Ⅱ)求數(shù)列{ }前n項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)圖象如圖,f'(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是( )
A.0<f'(2)<f'(3)<f(3)﹣f(2)
B.0<f'(3)<f'(2)<f(3)﹣f(2)
C.0<f'(3)<f(3)﹣f(2)<f'(2)
D.0<f(3)﹣f(2)<f'(2)<f'(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)a=1時(shí),x0∈[1,e]使不等式f(x0)≤m,求實(shí)數(shù)m的取值范圍;
(2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm﹣1=﹣2,Sm=0,Sm+1=3,其中m≥2,則nSn的最小值為( )
A.﹣3
B.﹣5
C.﹣6
D.﹣9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1: (φ為參數(shù),實(shí)數(shù)a>0),曲線C2: (φ為參數(shù),實(shí)數(shù)b>0).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α(ρ≥0,0≤α≤ )與C1交于O、A兩點(diǎn),與C2交于O、B兩點(diǎn).當(dāng)α=0時(shí),|OA|=1;當(dāng)α= 時(shí),|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+2,g(x)=x2﹣mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有兩個(gè)不同的實(shí)數(shù)根,求證:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[ ,e]使得mf′(x)+g(x)≥2x+m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com