【題目】已知圓,直線
(1)若直線與圓相交于兩點,弦長等于,求的值;
(2)已知點,點為圓心,若在直線上存在定點(異于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標及改常數(shù).
【答案】(1) 或.
(2) 在直線上尋在定點,使得為常數(shù).
【解析】分析:(1)由弦長等于,結(jié)合圓的半徑為,利用勾股定理可得圓心到直線的距離,根據(jù)點到直線距離公式列方程求解即可;(2)直線的方程為,假設存在定點滿足題意,設,,平方后可
所以且,解得,(舍去,與重合),,,從而可得結(jié)果.
詳解:(1)由弦長等于,結(jié)合圓的半徑為,利用勾股定理可得圓心到直線的距離,利用點到直線距離公式列方程可得或;
(2)由題知,直線的方程為,假設存在定點滿足題意,
則設,,
得,且
所以
整理得:
因為,上式對于任意恒成立,
所以且
解得,所以,(舍去,與重合),,
綜上可知,在直線上尋在定點,使得為常數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線的方程為.
()在所給坐標系中畫出圓錐曲線.
()圓錐曲線的離心率__________.
()如果頂點在原點的拋物線與圓錐曲線有一個公共焦點,且過第一象限,則
(i)交點的坐標為__________.
(ii)拋物線的方程為__________.
(iii)在圖中畫出拋物線的準線.
()已知矩形各頂點都在圓錐曲線上,則矩形面積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知方程.
()若已知方程表示橢圓,則的取值范圍為__________.
()語句“”是語句“方程”表示雙曲線的(_____________).
A.充分不必要條件 B.必要不充分條件 C.充在條件 D.既不充分也不必要條件
()根據(jù)()的結(jié)論,以“如果那么”的形式寫出一個正確命題,記作命題,則
命題:__________.
()套用量詞命題的格式:“, ”或“, ”,改寫()中命題,
表述形式為:__________.
()寫出()中命題的逆命題,記作命題,則
命題:__________.
()判斷()中命題的真假,并陳述判斷理由.
命題為__________命題,因為__________.
()若已知方程表示橢圓,則該橢圓兩個焦點的坐標分別為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓心為,定點, 為圓上一點,線段上一點滿足,直線上一點,滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)為坐標原點, 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點.當且滿足時,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點在平面內(nèi).
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設二面角的大小為,求的值;
(Ⅲ)求點到面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com