【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求實數(shù)m的值;
(2)用定義證明函數(shù)f(x)在區(qū)間(0,+∞)上為單調(diào)減函數(shù);
(3)若關(guān)于x的不等式f(x)+a<0對區(qū)間[1,3]上的任意實數(shù)x都成立,求實數(shù)a的取值范圍.
【答案】
(1)∵f(﹣x)=﹣f(x),
∴ =﹣ ,
解得:m=1
(2)證明:f(x)=1+ ,
設(shè)0<x1<x2,
∵f(x1)﹣f(x2)= ﹣ = ,
又1<2x1<2x2,2x1﹣1>0,2x2﹣1>0,x2﹣x1>0,
∴ >0,
∴f(x1)>f(x2),
∴函數(shù)f(x)在(0,+∞)遞減
(3)解:∵f(x)+a<0對區(qū)間[1,3]上的任意實數(shù)x都成立,
∴a<﹣f(x)對區(qū)間[1,3]上的任意實數(shù)x都成立,
∵f(x)在(0,+∞)遞減,
∴f(x)在[1,3]遞減,
∴f(x)的最大值是f(1)=3,
∴﹣f(x)的最小值是﹣3,
∴a<﹣3
【解析】(1)根據(jù)函數(shù)的奇偶性求出m的值即可;(2)根據(jù)函數(shù)單調(diào)性的定義證明即可;(3)問題轉(zhuǎn)化為a<﹣f(x)對區(qū)間[1,3]上的任意實數(shù)x都成立,求出f(x)的最大值,從而求出a的范圍即可.
【考點精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a﹣ .
(1)求證:函數(shù)f(x)在R上為增函數(shù);
(2)當函數(shù)f(x)為奇函數(shù)時,求函數(shù)f(x)在[﹣1,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某市準備在道路EF的一側(cè)修建一條運動比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù) (A>0,ω>0),x∈[﹣4,0]時的圖象,且圖象的最高點為B(﹣1,2).賽道的中間部分為長 千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧 .
(1)求ω的值和∠DOE的大;
(2)若要在圓弧賽道所對應(yīng)的扇形ODE區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路EF上,一個頂點在半徑OD上,另外一個頂點P在圓弧 上,且∠POE=θ,求當“矩形草坪”的面積取最大值時θ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=( )
A.0或1
B.0或﹣1
C.1或﹣1
D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ⊥ ,求θ;
(3)若θ= ,求證: ∥ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,2)為圓C:x2+y2﹣2ax﹣2ay=0(a>0)外一點,圓C上存在點P使得∠CAP=45°,則實數(shù)a的取值范圍是( )
A.(0,1)
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 , .
(1)當n=1,2,3時,分別比較f(n)與g(n)的大小(直接給出結(jié)論);
(2)由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且, .
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足, .①求數(shù)列的通項公式;②是否存在正整數(shù), (),使得, , 成等差數(shù)列?若存在,求出, 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com