(本小題滿分12分)
已知數(shù)列滿足,數(shù)列滿足,
數(shù)列滿足.
(1)若,證明數(shù)列為等比數(shù)列;
(2)在(1)的條件下,求數(shù)列的通項(xiàng)公式;
(3)若,證明數(shù)列的前項(xiàng)和滿足。

(1)根據(jù)等比數(shù)列的定義得到證明。
(2)(3)利用數(shù)列求和放縮法得到證明。

解析試題分析:解:(1),
由已知
數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;
(2)由(1)得,
證明(3)首先證明
時(shí),成立
②假設(shè)時(shí)成立
則當(dāng)時(shí),也成立,
,



,綜上所述:
考點(diǎn):本試題主要是考查了數(shù)列概念和求和的知識(shí)運(yùn)用。
點(diǎn)評(píng):解決數(shù)列的通項(xiàng)公式的求解可以通過(guò)定義法或者是遞推式來(lái)表示得到結(jié)論,或者能結(jié)合前n項(xiàng)和與其的關(guān)系式來(lái)求解。對(duì)于等比數(shù)列的判定,則可以直接運(yùn)用定義法來(lái)說(shuō)明相鄰兩項(xiàng)比值為定值來(lái)說(shuō)明,同時(shí)要對(duì)于有絕對(duì)值的數(shù)列求和的時(shí)候要助于去掉絕對(duì)值符號(hào)來(lái)進(jìn)行,屬于難度試題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.
(Ⅰ)計(jì)算的值,猜想的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an
(1)寫出an的表達(dá)式;(不要求嚴(yán)格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn;
(3)設(shè)bn =(kn一5) ,若對(duì)任何nN* 都有anbn,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
數(shù)列的前項(xiàng)和為,若,點(diǎn)在直線上.
⑴求證:數(shù)列是等差數(shù)列;
⑵若數(shù)列滿足,求數(shù)列的前項(xiàng)和
⑶設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知數(shù)列的前n項(xiàng)和,且與1的等差中項(xiàng)。
(1)求數(shù)列和數(shù)列的通項(xiàng)公式;
(2)若,求
(3)若,是否存在,使得并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(1)求的通項(xiàng)公式;
(2)在中是否存在使得中的項(xiàng),若存在,請(qǐng)寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列,,且依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)已知數(shù)列中,,()
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
已知數(shù)列項(xiàng)和.數(shù)列滿足,數(shù)列滿足。(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案