【題目】盒中裝有個(gè)零件,其中個(gè)是使用過(guò)的,另外個(gè)未經(jīng)使用.
(1)從盒中每次隨機(jī)抽取個(gè)零件,每次觀察后都將零件放回盒中,求次抽取中恰有次抽到使用過(guò)的零件的概率;
(2)從盒中隨機(jī)抽取個(gè)零件,使用后放回盒中,記此時(shí)盒中使用過(guò)的零件個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
【答案】(1)次抽取中恰有次抽到使用過(guò)的零件的概率.
(2)隨機(jī)變量的分布列為:
.
【解析】試題分析:(1)這是一個(gè)有放回地抽取的問(wèn)題,可以看作獨(dú)立重復(fù)試驗(yàn)的概率問(wèn)題.首先求出“從盒中隨機(jī)抽取個(gè)零件,抽到的是使用過(guò)的零件”的概率,然后用獨(dú)立重復(fù)事件的概率公式便可求得“次抽取中恰有次抽到使用過(guò)的零件”的概率.(2)7個(gè)零件中有2個(gè)是使用過(guò)的,再抽取2個(gè)使用后再放回,則最多有4個(gè)是使用過(guò)的,最少有2個(gè)是使用過(guò)的,所以隨機(jī)變量的所有取值為.“”表示抽取的2個(gè)都是使用過(guò)的,“”表示抽取的2個(gè)中恰有1個(gè)是使用過(guò)的,“”表示抽取的2個(gè)都是未使用過(guò)的,這是一個(gè)超幾何分布問(wèn)題,由超幾何分布的概率公式可求得隨機(jī)變量的分布列.
試題解析:(1)記“從盒中隨機(jī)抽取個(gè)零件,抽到的是使用過(guò)的零件”為事件,
則.
所以次抽取中恰有次抽到使用過(guò)的零件的概率. 6分
(2)隨機(jī)變量的所有取值為.
;;
. 8分
所以,隨機(jī)變量的分布列為:
. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a>b,a=5,c=6,sinB= .
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將3本相同的小說(shuō),2本相同的詩(shī)集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三個(gè)實(shí)數(shù)、、,若成立,則稱(chēng)、具有“性質(zhì)”.
(1)試問(wèn):①,0是否具有“性質(zhì)2”;
②(),0是否具有“性質(zhì)4”;
(2)若存在及,使得成立,且
,1具有“性質(zhì)2”,求實(shí)數(shù)的取值范圍;
(3)設(shè),,,為2019個(gè)互不相同的實(shí)數(shù),點(diǎn)()
均不在函數(shù)的圖象上,是否存在,且,使得、
具有“性質(zhì)2018”,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為常數(shù),且,,.
(I)若方程有唯一實(shí)數(shù)根,求函數(shù)的解析式.
(II)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值.
(III)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com